Evidence of the Electron Velocity Runaway in Polar Semiconductors

  • J. P. Leburton


A new approach of treating the Boltzmann equation for electron-polar optical phonon (P.O.P.) interaction scattering is described. It is based on electron wave vector direction conservation for the high electron energy P.O.P. scattering, what gives a simple form to the collision integral. Afterwards, information on the distribution function is derived from a Fokker-Planck-like equation. It is shown that the tail of the distribution function exhibits a minimum before saturating up to infinity. The possibility of this velocity runaway is then discussed.


Physical Review High Electron Energy Minimum Curve Polar Optical Phonon Electric Field Direction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.P. Leburton, to be published.Google Scholar
  2. 2.
    H. Fröhlich, Proceedings of Royal Society of London 188A 532 (1947).ADSCrossRefGoogle Scholar
  3. 3.
    I.B. Levinson, Soviet Physics-Solid state 7, 1098 (1965).MathSciNetGoogle Scholar
  4. 4.
    E.J. Aas and K. Bløtekjaer, Journal of Physics and Chemistry of Solids 35, 1053 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    D. Kranzer, H. Hillbrand, H. Pötzl and O. Zimmert, Acta Physica Autriaca 35, 110 (1972).Google Scholar
  6. 6.
    W.P. Dumke, Physical Review 167, 783 (1968).ADSCrossRefGoogle Scholar
  7. 7.
    This point is of crucial importance. So, the optical deformation potential matrix element is either constant or proportional to q11–13, giving for high energy a relaxation time proportional to ε−1/2 and ε−3/2 respectively. Keeping in mind a Fröhlich’s argument2 — roughly speaking, the rate of energy transfer from the field to an electron is on an average over many collision proportional to the relaxation time, whereas the rate of energy transfer from electron to the lattice vibrations is inversely proportional to it“ — even for fast electrons the relaxation time decreased with the electron energy and the carriers can always dissipate energy into the lattice. Therefore, in covalent semi-conductors like Si or Ge, such a runaway effect can not be expected.Google Scholar
  8. 8.
    H. Fröhlich, Philosophical Magazine Suppl. 3, 325 (1954).Google Scholar
  9. 9.
    M. Abromovitz and I.A. Segun, Handbook of Mathematical Functions, DOVER publ. Inc. New York (1968).Google Scholar
  10. 10.
    E.M. Conwell and O.M. Vassel, Physical Review 166, 717 (1968).ADSCrossRefGoogle Scholar
  11. 11.
    E.M. Conwell, Solid State Physics, Suppl. 9, F. Seitz, D. Turnball, H. Ehrenreich editors Academic Press Inc. New York (1967).Google Scholar
  12. 12.
    W.A. Harrison, Physical Review 104, 1281 (1956).ADSCrossRefGoogle Scholar
  13. 13.
    D.K. Ferry, Surface Sciences 57, 218 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • J. P. Leburton
    • 1
  1. 1.Research LaboratoriesSiemens AGMünchen 83W.-Germany

Personalised recommendations