Hole Trapping Energies as Evidence for the Existence of Free Small Polarons in Oxide Crystals

  • R. T. Cox


The energy needed to liberate a hole trapped by an Mg2+ ion in Al2O3 (sapphire) was deduced from the temperature dependence (T = 220−300 K) of the recombination kinetics following UV excitation of compensated crystals. The result obtained, 0.7 eV, is much smaller than the value deduced from the activation energy of the p-type conductivity observed for uncompensated Mg:Al2O3 crystals at 1600–1900 K by Wang and Kröger. A possible interpretation is that free holes form small polarons in Al2O3, with site-to-site jumping energy about 2.4 eV at high T. Theoretical calculations by Mackrodt et al support this hypothesis. It is suggested that free holes may also form small polarons in MgO and CaO.


Cation Vacancy Solid State Phys Small Polaron Free Hole Large Polaron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.G. Castner and W. Känzig, J.Phys.Chem.Solids 3, 178 (1957).ADSCrossRefGoogle Scholar
  2. 2.
    A.M. Stoneham, Theory of Defects in Solids, 653, Clarendon Press, Oxford, (1975).Google Scholar
  3. 3.
    R.T. Cox, Solid State Commun. 9, 1989 (1971).Google Scholar
  4. 4.
    S. Geschwind, P. Kisliuk, M.P. Klein, J.P. Remeika and D.L. Wood, Phys. Rev. 126, 1684 (1962).ADSCrossRefGoogle Scholar
  5. 5.
    R.T. Cox, J. de Physique 34, suppl. C9, 333 (1973).Google Scholar
  6. 6.
    J.B. Lacy, M.M. Abraham, J.L. Boldu O., Y. Chen, J. Narayan and H.T. Tohver, Phys. Rev. B18, 4136 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    H.A. Wang, F.A. Kröger and R.T. Cox, to be published.Google Scholar
  8. 8.
    S.K. Mohapatra and F.A. Kröger, J. American Ceramic Society 60, 141 (1977).CrossRefGoogle Scholar
  9. 9.
    M.J. Norgett and A.M. Stoneham, J. Phys. C: Solid State Phys. 6, 238 (1973).ADSCrossRefGoogle Scholar
  10. 10.
    H. Bialas and H.J. Stolz, Z. Physik B21, 319 (1975).ADSGoogle Scholar
  11. 11.
    W. Kappus, Z. Physik B21, 325 (1975).ADSGoogle Scholar
  12. 12.
    W.C. Mackrodt, private communication.Google Scholar
  13. 13.
    M.J. Norgett, A.M. Stoneham and A.P. Pathak, J. Phys. C: Solid State Phys. 10, 555 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    J.H. Harding, J. Phys. C: Solid State Phys. 12, 3931 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    W.C. Mackrodt and R.F. Stewart, J. Phys. C: Solid State Phys. 12, 5015 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    N.F. Mott, Advances in Physics 26, 363 (1977).ADSCrossRefGoogle Scholar
  17. 17.
    R.C. Hughes and D. Emin, The Physics of Silica and its Interfaces, 14, Pergamon Press, New York (1978) ( Ed.: S. Pantelides).Google Scholar
  18. 18.
    R.C. Hughes, Phys. Rev. B19, 5318 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    N.F. Mott and A.M. Stoneham, J. Phys. C: Solid State Phys. 10, 3391 (1977).ADSCrossRefGoogle Scholar
  20. 20.
    G. Rius, A. Hervé, R. Picard and C. Santier, J. de Physique 37, 129 (1976).CrossRefGoogle Scholar
  21. 21.
    A.J. Tench and M.J. Duck, J. Phys. C: Solid State Phys. 6, 1134 (1973).ADSCrossRefGoogle Scholar
  22. 22.
    A.J. Tench and M.J. Duck, J. Phys. C: Solid State Phys. 8, 257 (1975).ADSCrossRefGoogle Scholar
  23. 23.
    D.J. Eisenberg, L.S. Cain, K.H. Lee and J.H. Crawford Jr., Appl. Phys. Lett. 33, 479 (1978).ADSCrossRefGoogle Scholar
  24. 24.
    K.H. Lee and D.J. Eisenberg, unpublished thermoluminescence measurements.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • R. T. Cox
    • 1
  1. 1.Département de Recherche FondamentaleSection de Résonance MagnétiqueGrenoble-CedexFrance

Personalised recommendations