Advertisement

Energy Band Structures of NiO by an LCAO Method

  • J. Hugel
  • C. Carabatos

Abstract

Valence bands of NiO based on an LCAO method have been computed using 3d orbitals for nickel and 2s and 2p orbitals for oxygen. These orbitals were obtained by solving a coupled Schrödinger equation for the nickel and the oxygen ions with a local ionic potential acting on the lattice cation and anion site. The Slater Koster relations have been used for the development of the matrix elements and the resulting overlap, potential and crystal field integrals limited to the first and second neighbours have been numerically integrated.

Keywords

Local Potential Schrodinger Equation Relative Dielectric Constant Band Structure Calculation Energy Band Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Yamashita, J. Phys. Soc. Japan 18, 1010 (1963).ADSCrossRefGoogle Scholar
  2. 2.
    T. Wilson, Int. J. Quant. Chem. 3, 754 (1970).Google Scholar
  3. 3.
    L.F. Mattheis, Phys. Rev. B5, 290 (1972).ADSGoogle Scholar
  4. 4.
    T.C. Collins, A.B. Kunz and J.L. Ivey, Int. J. Quant. Chem. Symp. 9, 519 (1975).CrossRefGoogle Scholar
  5. 5.
    A.B. Kunz and G.T. Surrat, Solid State Commun. 25, 9 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    D.E. Eastman and J.L. Freeouf, Phys. Rev. Lett., 34, 395 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    R.J. Powell and W.E. Spicer, Phys. Rev. B2, 2182 (1970).ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Slater, Phys. Rev. 81, 385 (1951).ADSMATHCrossRefGoogle Scholar
  9. 9.
    P.O. Lbwdin, Adv. Phys. 5, 1 (1956).ADSCrossRefGoogle Scholar
  10. 10.
    F. Herman and S. Skillman, Atomic structure calculations ( Prentice Hall, Englewood cliffs, 1963 ).Google Scholar
  11. 11.
    F. Bassani, Theory of imperfect crystalline Solids, Trieste Lectures (IAEA, Vienna, 1971 ).Google Scholar
  12. 12.
    K. Schwartz, Phys. Rev. B5, 2466 (1972).ADSGoogle Scholar
  13. 13.
    W.B. Pearson, A. Handbook of lattice spacings and structures of metals and alloys ( Pergamon, New York, 1978 ).Google Scholar
  14. 14.
    J.C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954).ADSMATHCrossRefGoogle Scholar
  15. 15.
    F. Bassani and G. Pastori Parravicini, Electronic States and Optical Transitions in Solids ( Pergamon, New York, 1975 ).Google Scholar
  16. 16.
    G. Dresselhaus and M.S. Dresselhaus, Phys. Rev. 160, 649 (1967).ADSCrossRefGoogle Scholar
  17. 17.
    D.D. Buss and V.E. Shirf, Electronic Density of States, NBS publication 223 (L.H. Bennet editor 1971 ).Google Scholar
  18. 18.
    Castet-Mejean and F.M. Michel-Calendini, J. Phys. C, Solid State Phys. 11, 2195 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    K.H. Johnson, J.W. Messmer and J.W.D. Conolly, Solid State Commun. 12, 313 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • J. Hugel
    • 1
  • C. Carabatos
    • 1
  1. 1.Laboratoire de Physique des Milieux Condensés Faculté des SciencesUniversité de MetzMetzFrance

Personalised recommendations