Advertisement

SCF-Xα -SW Calculations of Electron States in Rare Earth Ion Doped Crystals

  • G. M. Copland
  • M. Mat Salleh

Abstract

The SCF-Xα-SW method has been applied to the calculations of electronic states in rare earth ion doped crystals. The conventional method is modified by use of a second Watson sphere. For Yb3+ and Tm2+ in CaF2, the crystal field parameters and transferred hyperfine interaction parameters have been calculated using this method. The agreement with experiment is reasonably good for the hyperfine interactions, but less good for crystal field interactions. This method is felt to be reasonably promising for calculations of rare earth electronic states but further work is necessary to refine the technique.

Keywords

Sphere Charge Crystal Field Parameter Hyperfine Interaction Parameter Crystal Field Interaction Watson Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Rösch, Electrons in finite and infinite structures. Eds. P. Phariseau and L. Scheire ( Plenum: New York 1977 ).Google Scholar
  2. 2.
    M. Mat Salleh and G.M. Copland, Journal of Physics C: Solid State Physics 11 L777 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    C.J.P. Graf and G.M. Copland, ( Proceedings of 1980 Annual Conference of Condensed Matter Division of the European Physical Society).Google Scholar
  4. 4.
    J.M. Baker, Journal of Physics C: Solid State Physics 10 3323 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    J.M. Baker et al., Journal of Physics C: Solid State Physics 11, 3071 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    F. Herman and S. Skilman, Atomic Structure Calculations ( Prentice Hall: Englewood Cliffs 1963 ).Google Scholar
  7. 7.
    K. Schwartz, Physical Review B5, 2466 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    K. Schwartz, Theoretica Clinica Acta 34, 225 (1974).CrossRefGoogle Scholar
  9. 9.
    J. Weber, H. Berthou and C.K. J$rgensen, Chemical Physics Letters 45, 1 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    Z.J. Kiss, Physical Review 127, 718 (1962).ADSCrossRefGoogle Scholar
  11. 11.
    J.L. Alves and M.L. De Siqueira, International Journal of Quantum Chemistry 11S 75 (1977).Google Scholar
  12. 12.
    J.M. Baker, W.B.J. Blake and G.M. Copland, Proceedings of the Royal Society A309, 119 (1969).CrossRefGoogle Scholar
  13. 13.
    J.M. O'Hare, J.A. Detrio and V.L. Donlan, Journal of Chemical Physics 51, 3937 (1969).ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Baker, Journal of Physics C: Solid State Physics 1, 1670 (1968).ADSCrossRefGoogle Scholar
  15. 15.
    R.G. Bessant and W. Hayes, Proceedings of the Royal Society A235, 430 (1965).Google Scholar
  16. 16.
    U. Ranon and J.S. Hyde, Physical Review 141, 259 (1966).ADSCrossRefGoogle Scholar
  17. 17.
    M. Mat Sallah, Ph.D. Thesis, University of London 1979.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • G. M. Copland
    • 1
  • M. Mat Salleh
    • 1
  1. 1.Queen Elizabeth CollegeLondonUK

Personalised recommendations