Calculation for the Electronic Structure of Hydrogen at the Octahedral Position in FCC Metals

  • M. Yussouff
  • R. Zeller


KKR Green’s function method developed by Beeby and others for substitutional defects is generalized to the case of interstitial defects. In this method, the ideal lattice is described by a periodic arrangement of muffin-tin potentials. The hydrogen atom is represented by an additional muffin-tin potential at the interstitial site. Charge densities and local density of states are computed self-consistently in the local density approximation to density functional theory. We present results for hydrogen at the octahedral site in Al, Ni, Cu, Pd, and Ag, and compare them with other existing calculations.


Octahedral Site Local Density Approximation Ideal Lattice Octahedral Position Impurity Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.J. Reilly, Jr in Proceedings of the International Symposium on Hydrides for Energy Storage, Geilo, Norway, 1977, edited by A.F. Anderson and A.J. Maelland (Pergamon, Oxford, 1978).Google Scholar
  2. 2.
    B.A. Kolachev, Hydrogen Embrittlement of Nonferrous Metals ( Israel Program for Scientific Translation, Jerusalem, 1968 ).Google Scholar
  3. 3.
    W.A. Harrison, Pseudopotential in Theory of Metals (Benjamin, New York, 1966 ).Google Scholar
  4. 4.
    See, for example P. Jena, F.Y. Fradin and D.E. Ellis, Phys. Rev. B20, 3543 (1979).Google Scholar
  5. 5.
    E.J. Baerends, D.E. Ellis and P. Ros, Chem. Phys. 2, 41 (1973).CrossRefGoogle Scholar
  6. 6.
    B.M. Klein, E.N. Economou and D.A. Papaconstantopoulos, Phys., Rev. Lett. 39, 574 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    J.L. Beeby, Proc. Roy. Soc. London, A 302 113 (1967).Google Scholar
  8. 8.
    T.H. Dupree, Ann.Phys. (N.Y.) 15, 63 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    R. Zeller and P.H. Dederichs, Phys. Rev. Lett. 42, 1713 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    H. Katayama, K. Terakura and J. Kanamori, Solid State Commun. 29, 431 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    F.S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    O. Jepsen and O.K. Anderson, Solid State Commun. 9, 1763 (1971).ADSCrossRefGoogle Scholar
  13. 13.
    V.L. Moruzzi, J.F. Janak and A.R. Williams, Calculated Electronic Properties of Metals ( Pergamon, New York, 1978 ).Google Scholar
  14. 14.
    L. Hedin and B.I. Lundqvist, J. Phys. C 4, 2064 (1971).ADSCrossRefGoogle Scholar
  15. 15.
    C.A. Baraff and M. Schlüter, Phys. Rev. Lett. 41, 895 (1978).ADSCrossRefGoogle Scholar
  16. 16.
    J. Bernholc, N.O. Lipari and S.T. Pantelides, Phys. Rev. Lett. 41, 895 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • M. Yussouff
    • 2
  • R. Zeller
    • 1
  1. 1.Institut für Festkörperforschung der Kernforschungsanlage JülichJülichW.-Germany
  2. 2.Indian Institute of TechnologyKanpurIndia

Personalised recommendations