The Potential Well of Mn2+ in SrCl2

  • F. Hess
  • H. W. den Hartog


The shape of the potential well of Mn2+ as an impurity in SrCl2 is calculated for low temperatures by means of a polarizablepoint-ion model. The computed well is very flat in the <111>, <100> and <110> directions, in agreement with experimental findings. A major improvement on previous work by van Winsum et al. is the complete absence of a polarization catastrophe in the potential energy calculations.


Physical Review Dipolar Field Fluorite Structure Dipolar Contribution Potential Energy Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.E. Roelfsema and H.W. den Hartog: Physical Review B 13, 7, p. 2723–2728 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    K.E. Roelfsema and H.W. den Hartog: Journal of Magnetic Resonance 29, 2, p. 255–273 (1978).Google Scholar
  3. 3.
    J.A. van Winsum, H.W. den Hartog and T. Lee: Physical Review B 18, 1, p. 178–184 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    H. Fröhlich: “Theory of Dielectrics” (Oxford, 1950 ).Google Scholar
  5. 5.
    W. Hayes (ed.): “Crystals with the Fluorite Structure” (Oxford, 1974 ).Google Scholar
  6. 6.
    C.J.F. Böttcher: “Theory of Electric Polarization” (Amsterdam, 1973 ).Google Scholar
  7. 7.
    A.B. Lidiard and M.J. Norgett in: “Computational Solid State Physics”, eds. F. Herman, N.W. Dalton and T.R. Koehler (New York, 1972 ), p. 385–412.CrossRefGoogle Scholar
  8. 8.
    C.R.A. Catlow, K.M. Diller, M.J. Norgett, J. Corish, B.M.C. Parker and P.W.M. Jacobs: Physical Review B 18, 6, p. 2739–2749 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    W.D. Wilson, R.D. Hatcher, G.D. Dienes and R. Smoluchowski: Physical Review 161, 3, p. 888–896 (1967).ADSCrossRefGoogle Scholar
  10. 10.
    E.J. Bijvank: “The Crystal Field Probe Gd3+ in a Systematic Series of Dipolar Defects” (Thesis, Groningen, 1979).Google Scholar
  11. 11.
    D.M. Himmelblau: “Applied Non-Linear Programming” (New York, 1972 ).Google Scholar
  12. 12.
    J.R. Hardy and A.M. Karo: “The Lattice Dynamics and Statics of Alkali Halide Crystals” (New York, 1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • F. Hess
    • 1
  • H. W. den Hartog
    • 1
  1. 1.Solid State Physics LaboratoryUniversity of GroningenGroningenThe Netherlands

Personalised recommendations