Deviations from Matthiessen’s Rule Due to Surface Scattering: Aluminium

  • J. van der Maas
  • R. Huguenin
  • C. Rizzuto


An analysis of experimental data from various authors on the electrical resistivity of aluminium foils and wires shows that the DMR due to surface scattering varies linearly with the residual surface resistivity ρ o s = ρo - ρo (bulk) and is the same for residual bulk resistivities ranging from 0.1–1 nΩcm. The temperature dependence of this DMR is consistent with a T2-dependence below 20 K, and we estimate the coefficient of T to be of the order of 10-3ρ o s ΩcmK-2. Sample dependent anomalies in this temperature dependence considerably complicate an estimate of the size effect below 4 K.


Electrical Resistivity Surface Resistivity Aluminium Foil Residual Resistivity Surface Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.R. Cimberle, G. Bobel and C. Rizzuto, Advances in Physics 23, 639–71 (1974)ADSCrossRefGoogle Scholar
  2. 1a.
    A.D. Caplin and C. Rizzuto, Journal of Physics C : Solid State Physics 3 L117–20 (1970).ADSCrossRefGoogle Scholar
  3. 2.
    J. Bass (review article on DMR), Advances in Physics 21, 431–604 (1972).ADSCrossRefGoogle Scholar
  4. 3.
    J.A. Rowlands and S.B. Woods, Journal of Physics F : Metal Physics 8, 1929–39 (1978)ADSCrossRefGoogle Scholar
  5. 3a.
    T. Fujita and T. Ohtsuka, Journal of Low Temperature Physics 29, 333–44 (1977).ADSCrossRefGoogle Scholar
  6. 4.
    See the following review articles of size effects G. Brändli and J.L. Olsen, Materials Science and Engineering 4, 61–83 (1969)CrossRefGoogle Scholar
  7. 4a.
    D.C. Larson, Physics of Thin Films, Vol.6 (New York : Academic Press) 81–149 (1971).Google Scholar
  8. 5.
    J.B. van Zytveld and J. Bass, Physical Review 177, 1072–82 (1969).ADSCrossRefGoogle Scholar
  9. 6.
    B.N. Aleksandrov, Zh.Eksp. i Teor.Fiz. 43, 399–410 (1962)Google Scholar
  10. 6a.
    Soviet Physics JETP 16, 286–94 (1963).ADSGoogle Scholar
  11. 7.
    R. Reich, Thesis (1965) Paris.Google Scholar
  12. 8.
    R. Risnes, Philosophical Magazine 21, 591–97 (1970).ADSCrossRefGoogle Scholar
  13. 9.
    I. Holwech and J. Jeppesen, Philosophical Magazine 15, 217–28 (1967).ADSCrossRefGoogle Scholar
  14. 10.
    Yu N. Chiang, V.V. Eremenko and O.G. Shevchenko, Zh. Eksp. i Teor.Fiz. 54, 1321–32 (1968)Google Scholar
  15. 10a.
    Soviet Physics JETP 27, 706–12 (1968).ADSGoogle Scholar
  16. 11.
    A. von Bassewitz and E.N. Mitchell, Physical Review 182, 712–16 (1969).ADSCrossRefGoogle Scholar
  17. 12.
    R. Risnes and V. Sollien, Philosophical Magazine 20, 895–905 (1969).ADSCrossRefGoogle Scholar
  18. 13.
    J.L. Olsen, Helvetica Physica Acta 31, 713–26 (1958).Google Scholar
  19. 14.
    F.J. Blatt and H.G. Satz, Helvetica Physica Acta 33, 1007–20 (1960).Google Scholar
  20. 15.
    P. Cotti, E.M. Fryer and J.L. Olsen, Helvetica Physica Acta 37, 585–88 (1964).Google Scholar
  21. 16.
    J.C. Garland and D.J. van Harlingen, Journal of Physics F : Metal Physics 8 ,117–124 (1978)ADSCrossRefGoogle Scholar
  22. 16a.
    J.M.J.M. Ribot, J. Bass, H. van Kempen and P. Wyder, Journal of Physics F : Metal Physics 9, L117–122 (1979).ADSCrossRefGoogle Scholar
  23. 17.
    F.J. Blatt, Physics of Condensed Mattery 9, 137 (1969).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. van der Maas
    • 1
  • R. Huguenin
    • 1
  • C. Rizzuto
    • 2
  1. 1.Institut de Physique ExpérimentaleI ’Université de LausanneLausanneSwitzerland
  2. 2.Istituto di Scienze Fisiche and Gruppo Nazionale di Struttura della MateriaC.N.R.GenovaItaly

Personalised recommendations