Electronic Transport in Intermediate Valence Compounds

  • H. J. Leder
  • G. Czycholl


To describe transport properties of intermediate valence compounds, we study the periodic Anderson model with off-site hybridization. A particle density operator which is consistent with the model assumptions is derived, and the current operator is determined via the continuity equation. The model is treated within the alloy analog approximation, using the CPA to solve the alloy problem. The static conductivity and other transport quantities are then calculated within the CPA theory of electronic transport.


Ward Identity Static Conductivity Coherent Potential Approximation Coulomb Correlation Periodic Anderson Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review on the experimental situation see : D. Wohlleben, Journ. de Phys. Coll. 37 ,C4–231 (1976).Google Scholar
  2. 2.
    For a review on the theoretical situation see : N. Grewe, H.J. Leder, P. Entel, to be published in Festkörperprobleme XX, ed. J. Treusch (Vieweg, Braunschweig 1980).Google Scholar
  3. 3.
    T. Penney, F. Holtzberg, Phys. Rev. Letters 34, 322 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    P. Scoboria, J.E. Crow, T. Mihalisin, J.Appl.Phys. 50, 1895 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    W. Franz, A. Grießel, F. Steglich, D. Wohlleben, Z. Physik B31 7 (1978).ADSGoogle Scholar
  6. 6.
    H. Schneider, Diplomarbeit Köln (1980).Google Scholar
  7. 7.
    J.H. Jefferson, K.W. Stevens, J.Phys. C11, 3919 (1978).Google Scholar
  8. 8.
    Y. Ono, S.G. Mishra, Solid State Commun. (1980), to be published.Google Scholar
  9. 9.
    P. Entel, B. Mühlschlegel, Y. Ono, Z. Physik B (1980), to be published.Google Scholar
  10. 10.
    O. Sakai, S. Seki, M. Tachiki, Journ. Phys. Soc. Japan 45, 1465 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    H.J. Leder, G. Czycholl, Z. Physik B35, 7 (1979).ADSGoogle Scholar
  12. 12.
    M.R. Martin, J.W. Allen, J. Appl. Phys. 50, 7561 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    B. Velicky, S. Kirkpatrick, H. Ehrenreich, Phys. Rev. 175, 747 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    B. Velicky, Phys. Rev. 184, 614 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    F. Brouers, A.V. Vedyayev, Phys. Rev. B5, 348 (1972)ADSGoogle Scholar
  16. 15.a
    F. Brouers, M. Brauwers, Journ. de Physique Lett. 36, L–17 (1975).Google Scholar
  17. 16.
    P.N.Sen, Phys. Rev. B8, 5613 (1973).ADSGoogle Scholar
  18. 17.
    K. Elk, J. Richter, V. Christoph, J. Phys. F9, 307 (1979).ADSCrossRefGoogle Scholar
  19. 18.
    S.K. Ghatak, M. Avignon, K.H. Bennemann, Journ. de Phys. Coll. 37, C4–289 (1976)Google Scholar
  20. 18.a
    S.K. Ghatak, M. Avignon, K.H. Bennemann, J. Phys. F6, 1441 (1976).ADSCrossRefGoogle Scholar
  21. 19.
    G. Czycholl, H.J. Leder, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • H. J. Leder
    • 1
  • G. Czycholl
    • 2
  1. 1.Institut für Theoretische PhysikUniversität KölnKöln 41West-Germany
  2. 2.Institut für PhysikUniversität DortmundDortmund 50West-Germany

Personalised recommendations