Advertisement

Formation of Sb- and Bi-Clusters in He-Atmosphere

  • J. Mühlbach
  • E. Recknagel
  • K. Sattler

Abstract

Clusters in the size ranges Sb1-Sb500 and Bi1-Bi280 have been grown by inert gas condensation. The particle masses are analyzed by an electronic time of flight spectrometer. The Sbn-spectrum is characterized by a sequence of tetramer-clusters Sb4i (i = 1,2,…). The Bin-spectrum shows high abundances for Bi5 and Bi7, and low abundances for the sequence Bi6, Bi9, Bi12 and Bi15. In the low size range (n ≲ 20) the individual electronic properties of the cluster elements and in the high size range (n ≳ 20) the nucleation statistics is decisive for the size distributions.

Keywords

Electronic Time Cluster Element Condensation Cell Valence Band Structure Solid State Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.J. Hauser and L.R. Testardi, Physical Review Letters 20, 12 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    M.H. Cohen, L.M. Falicov, and S. Golin, IBM Journal, July 1964, p.215.Google Scholar
  3. 3.
    C.C. Lu, T.A. Carlson, F.B. Malik, T.C. Tucker, and C.W. Nestor Jr., Atomic Data 3, 1 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    D.W. Bullet, Solid State Communications 17 ,965 (1975).ADSCrossRefGoogle Scholar
  5. 5.
    S. Golin, Physical Review 166, 643 (1968).ADSCrossRefGoogle Scholar
  6. 6.
    L. Ley, R.A. Pollak, S.P. Kowalczyk, R. McFeely, and D.A. Shirley, Physical Review B8, 641 (1973).ADSGoogle Scholar
  7. 7.
    C. Norris and J.T.M. Wotherspoon, Journal of Physics F : Metal Physics 6, L 263 (1976).ADSGoogle Scholar
  8. 8.
    Y. Baer and H.P. Myers, Solid State Communications 21, 833 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    J. Kordis and K.A. Gingerich, Journal of Chemical Physics 58, 5141 (1973).ADSCrossRefGoogle Scholar
  10. 10.
    B. Caboud, A. Hoareau, P. Nounou, and P. Uzau, International Journal of Mass Spectrometry and Ion Physics 11, 157 (1973).CrossRefGoogle Scholar
  11. 11.
    F.J. Kohl, Q.M. Uy, and K.D. Carlson, Journal of Chemical Physics 47, 2667 (1967).ADSCrossRefGoogle Scholar
  12. 12.
    J. Mühlbach, E. Recknagel, and K. Sattler, to be published.Google Scholar
  13. 13.
    K. Sattler, J. Mühlbach, A. Reyes Flotte, and E. Recknagel, Journal of Physics E : Scientific Instruments 13 (1980) in print.Google Scholar
  14. 14.
    R. Becker and W. Döring, Annalen der Physik 24, 719 (1935).ADSMATHCrossRefGoogle Scholar
  15. 15.
    F. Kuhrt, Zeitschrift für Physik 131, 185 (1952).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    D. Kashchiev, Surface Science 18, 389 (1968).ADSCrossRefGoogle Scholar
  17. 17.
    K. Binder and D. Stauffer, Advances in Physics 25, 343 (1976).ADSCrossRefGoogle Scholar
  18. 18.
    J. Feder, K.C. Russell, J. Lothe, and G.M. Pound, Advances in Physics 15 ,111 (1966).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. Mühlbach
    • 1
  • E. Recknagel
    • 1
  • K. Sattler
    • 1
  1. 1.Fakultät für PhysikUniversität KonstanzKonstanzGermany

Personalised recommendations