A New Theoretical Approach to Calculate Total Energy Differences in Solids. Application for the Tetragonal Shear Moduli of fcc Transition Metals

  • J. Ashkenazi
  • M. Dacorogna
  • M. Peter


A new approach for ground state energy calculations, based on the density functional formalism, is proposed. It uses the extremum property that first order variations of the electronic density around the ground state, result in second order total energy variations, and also an analogous property obtained for the ground state kinetic energy of non-interacting electrons. In addition to this, a new method, the LECA, is introduced, which enables us to gain a further order accuracy by error cancellation. So, having the possibility to use approximate densities, we can calculate the total energy differences, including the leading non-local exchange-correlation terms which are minimized to zero. The method is applied for the tetragonal shear moduli of the seven fcc transition metals. The results agree with experiment and include a prediction for Rhodium.


Ground State Energy Ground State Density Total Energy Difference Density Functional Formalism Total Ground State Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    W. Kohn and L.J. Sham, Phys.Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    A.R. Mackintosh and O.K. Andersen in : “Electrons at the Fermi Surface”, edited by M. Springford (Cambridge University Press, 1980), p.149.Google Scholar
  4. 4.
    J. Ashkenazi, M. Dacorogna, M. Peter, Y. Talmor, E. Walker and S. Steinemann, Phys.Rev. B18, 4120 (1978).ADSGoogle Scholar
  5. 5.
    M.P. Tosi, Solid State Physics, 16, 1–120 (1964).CrossRefGoogle Scholar
  6. 6.
    D.G. Pettifor, Commun. Phys. 1, 141 (1976); J. Phys. F8, 219 (1978).Google Scholar
  7. 6.a
    D.G. Pettifor, Commun. Phys. 1, 141 (1976); J. Phys. F8, 219 (1978).ADSGoogle Scholar
  8. 7.
    W.A. Harrison : “Pseudo-Potentials in the Theory of Metals” Ed. W.A. Benjamin Inc. New-York (1966)Google Scholar
  9. 7.a
    R.W. Shaw Jr., J. Phys. C2, 2335 (1969).ADSGoogle Scholar
  10. 8.
    V. Heine and D. Weaire, Solid State Physics 24, 363 (1970).Google Scholar
  11. 9.
    S.H. Vosko, R. Taylor and G.H. Koech, Can. J. Phys. 43, 1187 (1965).ADSCrossRefGoogle Scholar
  12. 10.
    O.K. Andersen, Phys. Rev. B12, 3060 (1975); Y. Glötzel, D. Glötzel and O.K. Andersen, to be published.ADSGoogle Scholar
  13. 11.
    F.E. Harris and H.J. Monkhorst, Phys. Rev. B2, 4400 (1970)ADSGoogle Scholar
  14. 11.a
    Errata, Phys. Rev. B9, 3946 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. Ashkenazi
    • 1
  • M. Dacorogna
    • 1
  • M. Peter
    • 1
  1. 1.Département de Physique de la Matière CondenséeUniversité de GenèveGenève 4Switzerland

Personalised recommendations