Free Radical Reactions in Relation to Lipid Peroxidation Inflammation and Prostaglandin Metabolism

  • T. F. Slater
  • Chiara Benedetto
Part of the NATO Advanced Study Institutes Series book series


Chemical bonds in organic structures normally involve the sharing of pairs of electrons; the two electrons in each pair have opposite spins that create opposing small magnetic dipoles. When a single unpaired electron is present, the resultant compound has a number of novel chemical and biological properties: such compounds are called free radicals. The presence of the unpaired electron is conventionally represented by a heavy dot : R . Reviews that may be consulted for general background references on free radicals are by Isenberg (1), Pryor (2), Slater (3), Pryor (4), Slater (5).


Electron Spin Resonance Methyl Glyoxal Free Radical Reaction Spin Trapping Linolenic Acid Hydroperoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Isenberg, Free radicals in tissues, Physiol. Revs., 44: 487, (1964).Google Scholar
  2. 2.
    W. A. Pryor, “Free Radicals”, McGraw-Hill Inc., New York, (1966).Google Scholar
  3. 3.
    T. F. Slater, “Free Radical Mechanisms in Tissue Injury”, Pion Ltd., London, (1972).Google Scholar
  4. 4.
    W. A. Pryor (ed.) “Free Radicals in Biology” volumes 1–3, Academic Press, New York, (1977).Google Scholar
  5. 5.
    T. F. Slater, Biochemical pathology in microtime, Panminerva Medica, 18: 381, (1976).PubMedGoogle Scholar
  6. 6.
    R. L. Willson, Free radical and tissue damage: mechanistic evidence from radiation Studies, in “Biochemical Mechanisms of Liver Injury” pp. 123–224, T. F. Slater, ed., Academic Press, London, (1978).Google Scholar
  7. 7.
    A. Stier, Membrane fluidity, in “Biochemical Mechanisms of Liver Injury” pp. 219–364, T. F. Slater, ed., Academic Press, London, (1978).Google Scholar
  8. 8.
    C. Benedetto and T.F. Slater, Electron spin resonance studies on human endometrium and cervix, in “Recent Studies on lipid Peroxidation in Health and Disease”, T. F. Slater, ed., in press, (1980).Google Scholar
  9. 9.
    H. Swartz, J. Bolton and D. Borg, (eds.) “Biological Applications of Electron Spin Resonance”, Wiley-Interscience, New York, (1972).Google Scholar
  10. 10.
    M. Symons, “Chemical and Biochemical Aspects of Electron Spin Resonance Spectroscopy”, Van Nostrand-Rheinhold Co. Ltd., (1978).Google Scholar
  11. 11.
    C. A. Evans, Spin trapping, Aldrichimica Acta, 12: 23, (1979).Google Scholar
  12. 12.
    C-S. Lai, T. A. Grover and L. M. Piette, Hydroxyl-radical production in a purified NADPH-cytochrome C (P450) reductase system, Archs. Biochem. Biophys., 193: 373, (1979).CrossRefGoogle Scholar
  13. 13.
    A. Ingall, K. A. K. Lott, T. F. Slater, S. Finch and A. Stier, Metabolic activation of CC14 to a free-radical product: studies using a spin trap, Biochem. Soc. Trans., 6: 962, (1978).PubMedGoogle Scholar
  14. 14.
    E. K. Lai, P. B. McCay, T. Noguchi and K-L. Fong, In vivo spin trapping of trichloromethyl radicals formed from CC14, Biochem. Pharmac., 28: 2231, (1979).CrossRefGoogle Scholar
  15. 15.
    T. F. Slater and P. A. Riley, Photosensitisation and lysosomal damage, Nature,Lond., 209: 151, (1966).CrossRefGoogle Scholar
  16. 16.
    R. K. Clayton, “Light and Living Matter” vol.2, pp.203–213, McGraw-Hill Inc., New York, (1971).Google Scholar
  17. 17.
    C. Auclair and M-C. Lecomte, Singlet oxygen production associated with hydroperoxide induced lipid peroxidation in liver microsomes, Biochem. Biophys. Res. Commun., 85: 946, (1978).CrossRefGoogle Scholar
  18. 18.
    S. D. Aust, D. L. Roerig and T. C. Pederson, Evidence for superoxide generation by NADPH-cytochrome c reductase of rat liver microsomes, Biochem. Biophys. Res. Commun., 47: 1133, (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    N. R. Bachur, S. L. Gordon, M. V. Gee, and M. Kon, NADPHcytochrome P-450 reductase activation of quinone anticancer agents to free radicals, Proc. Natl. Acad. Sci. U.S.A., 76: 954, (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    J. J. M. C. De Groot, G. J. Garssen, J. F. G. Vliegenthart and J. Boldingh, The detection of linoleic acid radicals in the anaerobic reaction of lipoxygenase, Biochim. Biophys. Acta., 326: 279, (1973).PubMedCrossRefGoogle Scholar
  21. 21.
    T. Ozawa and A. Hanaki, Hydroxyl radical produced by the reaction of superoxide ion with hydrogen peroxide: electron spin resonance detection by spin trapping, Chem. Pharm. Bull., 26: 2572, (1978).CrossRefGoogle Scholar
  22. 22.
    R. Latarjet, B. Ekert and P. Demerseman, Peroxidation of nucleic acids by radiation: biological implications, Rad. Res. Suppl., 3: 247, (1963).CrossRefGoogle Scholar
  23. 23.
    R. L. Willson,P. Wardman and K-D. Asmus, Interaction of dGMP radical with cysteamine and promethazine as possible model of DNA-repair, Nature, Lond., 252: 323, (1974).CrossRefGoogle Scholar
  24. 24.
    K. Hasegawa and L. K. Patterson, Pulse r.adiolysis studies in model lipid systems: formation and behaviour of peroxyradicals in fatty acids, Photochem. Photobiol., 28: 817, (1978).CrossRefGoogle Scholar
  25. 25.
    S. C. Sharma, H. Mukhtar, S. K. Sharma and C. R. Krishna Murti, Lipid peroxide formation in experimental inflammation, Biochem. Pharmac., 21: 1210, (1972).CrossRefGoogle Scholar
  26. 26.
    G. Ugazio, Halogenoalkanes and liver injury, in “Biochemical Mechanisms of Liver Injury”, pp.709–744, T. F. Slater, Ed., Academic Press, London,(1978).Google Scholar
  27. 27.
    A. Wendel, S. Feuerstein and K-H. Konz, Acute paracetamol intoxication of starved mice leads to lipid peroxidation in vivo, Biochem. Pharmac., 28: 2051, (1979).CrossRefGoogle Scholar
  28. 28.
    D. S. P. Patterson, W. M. Allen, S. Berrett, D. Sweasey and J. T. Dore, The toxicity of parenteral iron preparations in the rabbit and the pig with a comparison of the clinical and biochemical responses to iron-dextran in 2-day old and 8-day old piglets, Vet. Med. A., 18: 453, (1971).Google Scholar
  29. 29.
    D. B. Menzel, The role of free radicals in the toxicity of air pollutants (nitrogen oxides and ozone), in “Free Radicals in Biology” vol.2., pp.181–202, W. A. Pryor, ed., Academic Press Inc., New York, (1976).Google Scholar
  30. 30.
    J. Goodman and P. Hochstein, Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin, Biochem. Biophys. Res. Commun., 77: 797, (1977)PubMedCrossRefGoogle Scholar
  31. 31.
    T. F. Slater, The role of lipid peroxidation in liver injury, in “Pathogenesis and Mechanisms of Liver Cell Necrosis”, D. Keppler, ed., MTP Press, Lancaster, U.K., (1975).Google Scholar
  32. 32.
    J. F. Mead, Free radical mechamisms of lipid damage and consequences for cellular membranes, in “Free Radicals in Biology” vol.1., pp.51–68, W. A. Pryor, ed., Academic Press, New York, (1976).CrossRefGoogle Scholar
  33. 33.
    G. L. Plaa and H. Witschi, Chemicals, drugs and lipid peroxidation, Ann. Rev. Pharmacol., 16: 125, (1976).CrossRefGoogle Scholar
  34. 34.
    M. U. Dianzani and G. Ugazio, Lipid peroxidation, in “Biochemical Mechanisms of Liver Injury” pp.669–708, T. F. Slater, ed., Academic Press, London, (1978).Google Scholar
  35. 35.
    M. Hamberg and B. Samuelsson, On the specificity of the oxygenation of unsaturated fatty acids catalysed by soybean lipoxidase, J. Biol. Chem., 242: 5329, (1967).PubMedGoogle Scholar
  36. 36.
    M. Hambers, B. Samuelsson, I. Björkhem and H. Danielsson, Oxygenases in fatty acid and steroid metabolism,in “Molecular Mechanisms of Oxygen Activation” pp.30–85, 0. Hayaishi, ed., Academic Press Inc., New York, (1974).Google Scholar
  37. 37.
    R. T. Holman, P. O. Egwim and W. W. Christie, Substrate specificity of soybean lipoxidase, J. Biol. Chem., 244: 1149, (1969).PubMedGoogle Scholar
  38. 38.
    P. Borgeat and B. Samuelsson, Arachidonic acid metabolism in polymorphonuclear leukocytes: unstable imtermediate in formation of dihydroxy acids, Proc. Natl. Acad. Sci., U.S.A. 76: 3213, (1979).PubMedCrossRefGoogle Scholar
  39. 39.
    T. F. Slater, Mecha.isms of protection against the damage produced in biological systems by oxygen-derived radicals, in “Oxygen Free Radicals and Tissue Damage” Ciba Foundation Symposium 65 (new series), D. W. Fitzsimons, ed., Excerpta Medica, Amsterdam, (1979).Google Scholar
  40. 40.
    T. F. Slater and B. C. Sawyer, The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver systems in vitro, Biochem. J., 123: 805, (1971).PubMedGoogle Scholar
  41. 41.
    A. Benedetti, A. F. Casini, M. Ferrali and M. Comporti, Early alterations induced by carbon tetrachloride in the lipids of the membranes of the endoplasmic reticulum of the liver cell, Chem. Biol. Interactions, 17: 167, (1977).CrossRefGoogle Scholar
  42. 42.
    E. Schauenstein, Autoxidation of polyunsaturated esters in water: chemical structure and biological activity of the products, J. Lipid. Res., 8: 417, (1967).PubMedGoogle Scholar
  43. 43.
    E. Schauenstein, H. Esterbauer and N. Zollner, “Aldehydes in Biological Systems Pion Ltd., London, (1977).Google Scholar
  44. 44.
    J. M. McCord, Free radicals and inflammation: protection of synovial fluid by superoxide dismutase, Science, 185: 529, (1974).PubMedCrossRefGoogle Scholar
  45. 45.
    D. W. Fitzsimons (ed.), “Oxygen Free Radicals and Tissue Damage”, Ciba Foundation Symposium 65 (new series),Excerpta Medica, Amsterdam, (1979).Google Scholar
  46. 46.
    J. Robak, Adjuvant-induced and carrageenin-induced inflammation and lipid peroxidation in rat liver, spleen and lungs, Biochem. Pharmac., 27: 531, (1978).CrossRefGoogle Scholar
  47. 47.
    P. Puig-Parellada and J. M. Planas, Synovial fluid degradation induced by free radicals: in vitro action of several free radical scavengers and anti-inflammatory drugs, Biochem. Pharmac., 27: 535, (1978).CrossRefGoogle Scholar
  48. 48.
    M. V. Torrielli, Lipid peroxidation in experimental inflammation models, in “Recent Studies in Lipid Peroxidation in Health and Disease”, T. F. Slater, ed., in press, (1980).Google Scholar
  49. 49.
    E. D. Lash, The antioxidant and pro-oxidant activity in ascites tumours, Archs. Biochem. Biophys., 115: 332 (1966).CrossRefGoogle Scholar
  50. 50.
    K. Utsumi, G. Yamamoto and K. Inaba, Failure of Fez+ - induced lipid peroxidation and swelling in the mitochondria from ascites tumour cells, Biochim. Biophys. Acta., 105: 368, (1965).PubMedCrossRefGoogle Scholar
  51. 51.
    R. M. Arneson, V. J. Aloyo, G. S. Germain and J. E. Chenevey, Antioxidants in neoplastic cells: changes in the antioxidative capacity of mouse neuroblastoma cells measured by a single-phase assay, Lipids, 13: 383, (1978).PubMedCrossRefGoogle Scholar
  52. 52.
    A. A. Barber and F. Bernheim, Lipid Peroxidation: its measurement, occurrence and significance in animal tissues, Adv. Gerontol Res., 2: 355, (1967).PubMedGoogle Scholar
  53. 53.
    B. 0. Christopherson, Reduction of linolenic acid hydroperoxide by a glutathione peroxidase, Biochim. Biophys. Acta., 176: 463, (1969).CrossRefGoogle Scholar
  54. 54.
    G. Ugazio, M. V. Torriellí, E. Burdino, B. C. Sawyer and T. F. Slater, Long-range effects of products of carbon tetrachloride-stimulated lipid peroxidation, Biochem. Trans., 4: 353, (1976).Google Scholar
  55. 55.
    P. J. O’Brien, Hydroperoxides and superoxides in microsomal oxidations, Pharmacol. Therapeut., 2: 517, (1978).Google Scholar
  56. 56.
    H. Esterbauer, A. Benedetti and M. Comporti, in press, (1980).Google Scholar
  57. 57.
    E. Schauenstein, M. Ernet, H. Esterbauer and H. Zollner, Experiments on the therapeutic effect of 4-hydroxypentenal: II, inhibition of the growth of Sarcoma 180, Z. Krebs Forsch., 75: 90, (1971).CrossRefGoogle Scholar
  58. 58.
    P. J. Conroy, J. T. Nodes, T. F. Slater and G. W. White, Carcinostatic activity of 4-hydroxy-2-pent-en-1-al against transplantable murine tumour lines, Eur. J. Cancer, 11: 231, (1975).PubMedGoogle Scholar
  59. 59.
    M. U. Dianzani, Mechanisms of liver cell damage in carbon tetrachloride poisoning : a general reconsideration, in “Recent Studies on Lipid Peroxidation in Health and Disease”, T. F. Slater, ed., in press, (1980).Google Scholar
  60. 60.
    A. Ingall, K. A. K. Lott, T. F. Slater and A. Stier, Effects of lipid peroxidation on fluidity of rat liver endoplasmic reticulum membranes as shown by spin label techniques, in press (1980).Google Scholar
  61. 61.
    I. Dipple and M. D. Houslay, The activity of glucagonstimulated adenylate cyclase from rat liver plasma membranes is modulated by the fluidity of its lipid environment, Biochem. J., 174: 179, (1978).PubMedGoogle Scholar
  62. 62.
    H. W. Gardner, R. Kleiman, D. Weisleder and G. E. Inglett, Cysteine adds to lipid hydroperoxide, Lipids, 12: 655, (1977).PubMedCrossRefGoogle Scholar
  63. 63.
    E. Granstrom, Biosynthesis, in “Advances in Endoperoxide Prostacyclin and Thromboxane Research”, F. Berti and G. P. Velo, eds., Plenum Press, (1980).Google Scholar
  64. 64.
    R. N. Feinstein, R. J. M. Fry, E. C. Cameron, C. Peraino, and H. P. Morris, New aldehyde dehydrogenase isozymes in chemically-induced liver tumours in the rat, Proc. Soc. Exp. Biol. Med., 152: 463, (1976).PubMedGoogle Scholar
  65. 65.
    M. E. Hemler, H. W. Cook and W. E. M. Lands, Prostaglandin biosynthesis can be triggered by lipid peroxides, Archs. Biochem. Biophys., 193: 340, (1979).CrossRefGoogle Scholar
  66. 66.
    S. Moncada, R. J. Gryglewski, S. Bunting and J. R. Vane, A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (Prostaglandin x) which prevents platelet aggregation, Prostaglandins, 12: 715, (1976).PubMedGoogle Scholar
  67. 67.
    J. E. Packer, T. F. Slater and R. L. Willson, Direct observation of a free radical interaction between vitamin E and vitamin C, Nature, Lond., 278: 737, (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • T. F. Slater
    • 1
  • Chiara Benedetto
    • 2
  1. 1.Department of BiochemistryBrunel UniversityUxbridge, MiddlesexUK
  2. 2.Institute of General PathologyUniversity of TurinItaly

Personalised recommendations