Advertisement

Transbilayer Localization and Movement of Lysophosphatidylcholine and Phosphatidylcholine in Model — and Biomembranes

  • H. Van den Bosch
  • A. M. H. P. van den Besselaar
  • O. M. de Oliveira Filgueiras
  • J. H. E. Moonen
  • B. de Kruyff
Part of the NATO Advanced Study Institutes Series book series

Abstract

It has long been recognized that biological membranes represent vectorial structures with a topological asymmetry of their protein constituents, notably transport factors, receptors and glycoproteins. Only more recently has an asymmetric disposition of the phospholipids in the transverse plane of the membrane been appreciated. Classical in this respect are studies on the phospholipid distribution in the erythrocyte membrane. The use of specific phospholipases has led to the conclusion that sphingomyelin, and the majority of phosphatidylcholine are located in the outer half of the bilayer while phosphatidylserine and most of the phosphatidylethanolamine are situated in the inner monolayer (1). The use of impermeable reagents to detect the amino-phospholipids phosphatidylethanolamine and phosphatidylserine, gave results consistent with this distribution (2). It is obvious that the asymmetric arrangement of phospholipids in biomembranes, if a general phenomenon, can have important implications for the availability of phospholipid classes or -species for the functioning of membrane proteins in general and of phospholipid metabolizing enzymes in particular. For example, can phospholipases A located in a given monolayer only release fatty acids from phospholipids in that monolayer or are the phospholipids in that monolayer in dynamic equilibrium with those in the other monolayer through a rapid transbilayer movement? Is further metabolism of the reaction products of such a phospholipase activity, i.e. lysophospholipids and free fatty acids, restricted to the monolayer in which they are formed or can they move to the other monolayer as well?

Keywords

Microsomal Membrane Chromaffin Granule Sarcoplasmic Reticulum Membrane Outer Monolayer Isotropic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. A. Zwaal, B. Roelofsen and C. M. Colley, Localization of red cell membrane constituents, Biochem. Biophys. Acta 300: 159 (1973).PubMedCrossRefGoogle Scholar
  2. 2.
    M. S. Bretscher, Phosphatidylethanolamine: Differential labelling in intact cells and cell ghosts of human erythrocytes by a membrane-impermeable reagent, J. Mol. Biol., 71: 523 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    H. van den Bosch and J. G. N. de Jong, The subcellular distribution of two lysolecithin-hydrolyzing enzymes in beef liver, Biochim. Biophys. Acta, 398: 244 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    A. M. H. P. van den Besselaar, J. H. Verheijen and H. van den Bosch, The action of two purified lysophospholipases from beef liver on membrane-bound lysophosphatidylcholine, Biochim. Biophys. Acta, 431: 75 (1976).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Moonen, P. Trienekens and H. van den Bosch, The action of purified lysophospholipases on microsomal membrane-bound lysophosphatidylcholine, Biochim. Biophys. Acta., 489: 423 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    A. M. H. P. van den Besselaar, H. van den Bosch and L. L. M. van Deenen, Transbilayer distribution and movement of lysophosphatidylcholine in liposomal membranes, Biochim. Biophys. Acta., 465: 454 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    O. M. de Oliveira Filgueiras, A. M. H. P. van den Besselaar and H. van den Bosch, Availability of lysophosphatidylcholine in single bilayer vesicles for hydrolysis by lysophospholipase, Lipids, 13: 898 (1978).CrossRefGoogle Scholar
  8. 8.
    B. de Kruyff, A. M. H. P. van den Besselaar and L. L. M. van Deenen, Outside-inside distribution and translocation of lysophosphatidylcholine in phosphatidylcholine vesicles as determined by 13C-NMR using (n-13CH3)-enriched lipids, Biochim. Biophys. Acta., 465: 443 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    J. E. Rothman and J. Lenard, Membrane asymmetry, Science, 195: 743 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    J. A. F. op den Kamp, Lipids asymmetry in membranes, Annu. Rev. Biochem., 48: 47 (1979).CrossRefGoogle Scholar
  11. 11.
    J. A. Lucy, The fusion of biological membranes, Nature 227: 815 (1970).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Blaschko, H. Firemark, A. D. Smith and H. Winkler, Lipids of the adrenal medulla: lysolecithin, a characteristic constituent of chromaffin granules, Biochem. J., 104: 545 (1967).PubMedGoogle Scholar
  13. 13.
    O. M. de Oliveira Filgueiras, A. M. P. H. van den Besselaar and H. van den Bosch, Localization of lysophosphatidylcholine in bovine chromaffin granules, Biochim. Biophys. Acta., (1979) in press.Google Scholar
  14. 14.
    J. H. E. Moonen and H. van den Bosch, Studies on the transverse localization of lysophospholipase in bovine liver microsomes using proteplytic enzymes, Biochim. Biophys. Acta, 573: 114 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Moonen and H. van den Bosch, Studies on the transverse localization of lysophospholipase II in bovine liver microsomes by immunological techniques, Biochim. Biophys. Acta., (1979) in press.Google Scholar
  16. 16.
    A. M. H. P. van den Besselaar, B. de Kruyff, H. van den Bosch and L. L. M. van Deenen, Transverse distribution and movement of lysophosphatidylcholine in sarcoplasmic reticulum membranes as determined by 13C NMR and lysophospholipase, Biochim. Biophys. Acta, 555: 193 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    E. J. J. van Zoelen, B. de Kruyff and L. L. M. van Deenen, Protein mediated transbilayer movement of lysophosphatidylcholine in glycophorin-containing vesicles, Biochim. Biophys. Acta, 508: 97 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    B. de Kruyff, E. J. J. van Zoelen and L. L. M. van Deenen, Glycophorin facilitates the transbilayer movement of phosphatidylcholine in vesicles, Biochim. Biophys. Acta, 509: 537 (1978).CrossRefGoogle Scholar
  19. 19.
    W. Renooy, L. M. G. van Golde, R. F. A. Zwaal and L. L. M. van Deenen, Topological asymmetry of phospholipid metabolism in rat erythrocyte membranes, Eur. J. Biochem., 61: 53 (1976).CrossRefGoogle Scholar
  20. 20.
    B. Bloj and D. B. Zilversmit, Asymmetry and transposition rates of phosphatidylcholine in rat erythrocyte ghosts, Biochemistry, 15: 1277 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    J. E. Rothman and E. P. Kennedy, Rapid transmembrane movement of newly synthesized phospholipids during membrane assembly, Proc. Nat. Acad. Sci. (U.S.A.), 74: 1821 (1977).CrossRefGoogle Scholar
  22. 22.
    K. W. A. Wirtz, Transfer of phospholipids between membranes, Biochim. Biophys. Acta., 344: 95 (1974).PubMedCrossRefGoogle Scholar
  23. 23.
    B. de Kruyff, A. M. H. P. van den Besselaar, H. van den Bosch and L. L. M. van Deenen, Inside-outside distribution and diffusion of phosphatidylcholine in rat sarcoplasmic reticulum as determined by 13C NMR and phosphatidylcholine exchange protein, Biochim. Biophys. Acta., 555: 181 (1979).CrossRefGoogle Scholar
  24. 24.
    O. S. Nilsson and G. Dallner, Enzymic and phospholipid asymmetry in liver microsomal membranes, J. Cell Biol., 72: 568 (1977).PubMedCrossRefGoogle Scholar
  25. 25.
    J. A. Higgins and R. M. C. Dawson, Asymmetry of the phospholipid bilayer of rat liver endoplasmic reticulum, Biochim. Biophys. Acta., 470: 342 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    R. Sundler, S. L. Sarcione, A. W. Alberts and P. Roy Vagelos, Evidence against phospholipid asymmetry in intracellular membranes from liver, Proc. Nat. Acad. Sci. (U.S.A.), 74: 3350 (1977).CrossRefGoogle Scholar
  27. 27.
    A. M. H. P. van den Besselaar, B. de Kruyff, H. van den Bosch and L. L. M. van Deenen, Phosphatidylcholine mobility in liver microsomal membranes, Biochim. Biophys. Acta., 510: 242 (1978).PubMedCrossRefGoogle Scholar
  28. 28.
    B. de Kruyff, A. M. H. P. van den Besselaar, P. R. Cullis, H. van den Bosch and L. L. M. van Deenen, Evidence for isotropic motion of phospholipids in liver microsomal membranes; A 31P NMR study, Biochim. Biophys. Acta., 514: 1 (1978).CrossRefGoogle Scholar
  29. 29.
    A. Stier, S. A. E. Finch and B. Bösterling, Non-Lamellar structure in rabbit liver microsomal membranes, A 31P NMR study, FEBS Letters, 91: 109 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • H. Van den Bosch
    • 1
  • A. M. H. P. van den Besselaar
  • O. M. de Oliveira Filgueiras
  • J. H. E. Moonen
  • B. de Kruyff
  1. 1.Laboratory of BiochemistryState University of UtrechtThe Netherlands

Personalised recommendations