Advertisement

Region Relaxation in a Parallel Hierarchical Architecture

  • P. A. Nagin
  • A. R. Hanson
  • M. Riseman

Abstract

Over the past decade the range of image analysis applications has greatly broadened. Usually the first steps of processing involve the transformation of a large spatial array of pixels into a more compact description of the image in terms of visually distinct syntactic elements and their characteristics. These “low-level” processes may achieve the desired goal directly or may serve as the input to a further set of interpretation processes.

Keywords

Segmentation Algorithm Processing Cone Local Window Hierarchical Architecture Computer Vision System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballard, D. H., Brown, C. M., and Feldman, J. A., “An Approach to Knowledge-Directed Image Analysis,” in Computer Vision Systems (Hanson, A., and Riseman, E., eds.), New York, Academic Press (1978).Google Scholar
  2. Eklundh, J., and Rosenfeld, A., “Convergence Properties of Relaxation,” TR 701, Computer Science Center, Univ. of Maryland (Oct. 1978).Google Scholar
  3. Eklundh, J. O., Yamamoto, H., and Rosenfeld, A., “A Relaxation Method for Multispectral Pixel Classification,” IEEE Trans. Pat. Anal. Mach. Intel. 2:72–75 (1979).CrossRefGoogle Scholar
  4. Hanson, A., and Riseman, E., “Preprocessing Cones: A Computational Structure for Scene Analysis,” COINS Tech. Rpt. 74C-7, Univ. Massachusetts (Sept. 1974).Google Scholar
  5. Hanson, A. R., Riseman, E. M., and Nagin, P., “Region Growing in Textured Outdoor Scenes,” Proc. of 3rd Milwaukee Symp. Auto. Comput. Control (1975), pp. 407–417.Google Scholar
  6. Hanson, A. R., and Riseman, E. M., “Segmentation of Natural Scenes,” in Computer Vision Systems (Hanson, A., and Riseman, E., eds.), New York, Academic Press (1978).Google Scholar
  7. Hanson, A. R., and Riseman, E. M., “VISIONS: A Computer System for Interpreting Scenes,” in Computer Vision Systems (Hanson, A., and Riseman, E., eds.), New York, Academic Press (1978).Google Scholar
  8. Hanson, A. R., and Riseman, E. M., “Processing Cones: A Computational Structure for Image Analysis,” in Structured Computer Vision (Tanimoto, S., and Klinger, A., eds.), New York, Academic Press (1980).Google Scholar
  9. Hanson, A. R., Riseman, E. M., and Glazer, F. C., “Edge Relaxation and Boundary Continuity,” in Consistent Labeling Problems in Pattern Recognition (Haralick, R. M., ed.), Plenum Press, 1980.Google Scholar
  10. Hayes, K. C., Jr., Shah, A. N., and Rosenfeld, A., “Texture Coarseness: Further Experiments,” IEEE Trans. Sys. Man. Cyber. 4: 467–472 (1974).CrossRefGoogle Scholar
  11. Kelly, M. D., “Edge Detection in Pictures by Computer Using Planning,” Mach. Intel. 6:379–409 (1971).Google Scholar
  12. Render, J. R., “Saturation, Hue and Normalized Color: Calculation, Digitization Effects, and Use,” Tech. Rpt., Dept. Computer Science, Carnegie-Mellon University (Nov. 1976).Google Scholar
  13. Klinger, A., and Dyer, C. R., “Experiments on Picture Processing Using Regular Decomposition,” Computer Graphics and Image Processing 5:68–105 (March 1976).CrossRefGoogle Scholar
  14. Kohler, R. R., Ph.D. Dissertation, COINS Department, University of Massachusetts (in preparation).Google Scholar
  15. Levine, M. D., “A Knowledge Based Computer Vision System,” in Computer Vision Systems (Hanson, A., and Riseman, E., eds.), New York, Academic Press (1978).Google Scholar
  16. Nagin, P. A., Hanson, A. R., and Riseman, E. M., “Region Extraction and Description Through Planning,” COINS Tech. Rpt. 77–8, Univ. Massachusetts (May 1977).Google Scholar
  17. Nagin, P. A., “Studies in Image Segmentation Algorithms Based on Histogram Clustering and Relaxation,” COINS Tech. Rpt. 79–15 and Ph.D. Thesis, Univ. Massachusetts (Sept. 1979).Google Scholar
  18. Nagin, P., Kohler, R., Hanson, A., and Riseman, E., “Segmentation, Evaluation, and Natural Scenes,” Proc. IEEE Conf. Pat. Recog. Image Proc., Chicago (Aug. 1979).Google Scholar
  19. Ohlander, R., “Analysis of Natural Scenes,” Ph.D. Thesis, Carnegie-Mellon Univ. (Apr. 1975).Google Scholar
  20. Peleg, S., “Monitoring Relaxation Algorithms Using Labeling Evaluation,” TR 842, Computer Science Center, Univ. Maryland (Dec. 1979).Google Scholar
  21. Peleg, S., “A New Probabilistic Relaxation Scheme,” IEEE Trans. Pat. Anal. Mach. Intel. 2(4):362–369 (1980).CrossRefGoogle Scholar
  22. Pratt, W. K., Digital Image Processing, New York, John Wiley and Sons (1978).Google Scholar
  23. Prager, J. M., “Extracting and Labeling Boundary Segments in Natural Scenes,” IEEE Trans. Pat. Anal. Mach. Intel. PAMI-2:16–27 (1980).CrossRefGoogle Scholar
  24. Price, K., and Reddy, R., “Change Detection and Analysis in Multi-spectral Images,” Proc. 5th Internat’1 Joint Conf. Artif. Intel., Cambridge (1977), pp. 619–625.Google Scholar
  25. Riseman, E. M., and Hanson, A. R., “The Design of a Semantically Directed Vision Processor,” COINS Tech. Rpt. 74C-1, Univ. Massachusetts (Jan. 1974).Google Scholar
  26. Rosenfeld, A., Hummel, R., and Zucker, S., “Scene Labelling by Relaxation Operations,” IEEE Trans. Sys. Man Cyber SMC-6:420–433 (1976).CrossRefGoogle Scholar
  27. Rosenfeld, A., and Thurston, M., “Edge and Curve Detection for Visual Scene Analysis,” IEEE Trans. Comput. (1971), pp. 562–569.Google Scholar
  28. Schwartz, B., “Primary Open-Angle Glaucoma,” in Clinical Ophthalmology (Duane, T. D., ed.), Harper and Row (1976).Google Scholar
  29. Tanimoto, S. L., and Pavlidis, T., “A Hierarchical Data Structure for Picture Processing,” Comput. Graph. Image Proc. 2:104–119 (1975).CrossRefGoogle Scholar
  30. Tanimoto, S. L., “Regular Hierarchical Image and Processing Structures in Machine Vision,” in Computer Vision Systems (Hanson, A., and Riseman, E., eds.), New York, Academic Press (1978).Google Scholar
  31. Uhr, L., “Layered ‘Recognition Cone’ Networks that Preprocess, Classify, and Describe,” IEEE Trans. Comput. (1972), pp. 758–768.Google Scholar
  32. Yakamovsky, Y., “Boundary and Object Detection in Real World Images,” J. ACM 23:599–618 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • P. A. Nagin
    • 1
  • A. R. Hanson
    • 1
    • 2
  • M. Riseman
    • 1
    • 3
  1. 1.Tufts New England Medical CenterBostonUSA
  2. 2.School of Language and CommunicationHampshire CollegeAmherstUSA
  3. 3.Computer and Information Science DepartmentUniversity of MassachusettsAmherstUSA

Personalised recommendations