Advertisement

Vertical Mixing and Primary Production

  • John Marra
Part of the Environmental Science Research book series (ESRH, volume 19)

Abstract

Vertical mixing, by controlling the availability of substrates for phytoplankton growth (light, nutrients) is fundamental to the structure and dynamics of primary production in the sea. Its importance changes in kind depending on the level of resolution with which we wish to investigate the system, from determining overall patterns of productivity, to promoting the dominance of particular phytoplankton groups, and to affecting various cellular atrributes. From the perspective of phytoplankton growth (1,2), we can distinguish between phenomena at large scales wherein physical processes play a dominant role and smaller scales where features of the biology of plankton emerge. At these smaller scales we can expect phytoplankton growth characteristics and the dispersive effects of the fluid medium to affect the levels and local distribution of production together.

Keywords

Photosynthetic Rate Mixed Layer Internal Wave Light Regime Light Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Lewontin, BioScience 16:25 (1966).CrossRefGoogle Scholar
  2. 2.
    J. Marra, Ph.D. Thesis, Dalhousie University (1977).Google Scholar
  3. 3.
    H.U. Sverdrup, J. Mar. Res. 14:287 (1955).Google Scholar
  4. 4.
    O.J. Koblentz-Mishke, V.V. Volkovinsky and J.G. Kabanova, in: “Scientific Exploration of the South Pacific”, W.S. Wooster, ed., National Academy of Science, Washington, DC (1970).Google Scholar
  5. 5.
    J.S. Bunt, in: “Primary Productivity of the Biosphere”, H. Lieth and R.H. Whittaker, eds., Springer-Verlag, New York (1972).Google Scholar
  6. 6.
    S.J. Holt, Sci. Am. 221:178 (1969).CrossRefGoogle Scholar
  7. 7.
    G.A. Riley, Limnol. Oceanogr. 10:R202 (1965).CrossRefGoogle Scholar
  8. 8.
    H.U. Sverdrup, J. Cons. Perm. Int. Explor. Mer 18:287 (1953).Google Scholar
  9. 9.
    R.D. Pingree, P.R. Pugh, P.M. Holligan and G.R. Forster, Nature 258:672 (1975).CrossRefGoogle Scholar
  10. 10.
    R.D. Pingree, P.M. Holligan, G.T. Mardell, and R.N. Head, J. Mar. Biol. Ass. U.K. 56:845 (1976).CrossRefGoogle Scholar
  11. 11.
    T.C. Malone, Fish. Bull. 69:799 (1971).Google Scholar
  12. 12.
    J.J. Walsh, J.C. Kelley, T.E. Whitledge, J.J. Maclsaac and S.A. Huntsman, Limnol. Oceanogr. 19:155 (1974).CrossRefGoogle Scholar
  13. 13.
    M. Estrada and D. Blasco, Limnol. Oceanogr. 24:1065 (1979).CrossRefGoogle Scholar
  14. 14.
    T.C. Malone and M. Chervin, Limnol. Oceanogr. 24:683 (1979).CrossRefGoogle Scholar
  15. 15.
    R.W. Eppley, P. Koellar and G.T. Wallace, Jr., J. Exp. Mar. Biol. Ecol. 32:219 (1978).CrossRefGoogle Scholar
  16. 16.
    C.J. Lorenzen, Deep-Sea Res. 13:223 (1967).Google Scholar
  17. 17.
    K.L. Denman and T. Platt, Mem. Soc. R. Sci. Liege 7:19 (1975)Google Scholar
  18. 18.
    K.L. Denman, Deep-Sea Res. 23:539 (1976).Google Scholar
  19. 19.
    J.H. Steele, ed., “Spatial Patterns in Plankton Communities”, Plenum, New York (1978).Google Scholar
  20. 20.
    T. Wyatt, in: “Ecological Stability”, M.B. Usher and M.H. Williamson, eds., Chapman and Hall, London (1974).Google Scholar
  21. 21.
    R.W. Eppley, J.N. Rogers and J.J. McCarthy, Limnol. Oceanogr. 14:912 (1969).CrossRefGoogle Scholar
  22. 22.
    D. Titman, Science 192:463 (1976).CrossRefGoogle Scholar
  23. 23.
    R.W. Eppley, Fish. Bull. 70:1063 (1972).Google Scholar
  24. 24.
    E.A. Laws, Ecology 56:419 (1975).CrossRefGoogle Scholar
  25. 25.
    W.G. Harrison, J. Exp. Mar. Biol. Ecol. 21:199 (1976).CrossRefGoogle Scholar
  26. 26.
    M.J. Perry, M.C. Larsen and R.S. Alberte, Mar. Biol. (in press)Google Scholar
  27. 27.
    A.T. Chan, J. Phycol. 14:396 (1978).CrossRefGoogle Scholar
  28. 28.
    W.H. Munk and G.A. Riley, J. Mar. Res. 11:215 (1952).Google Scholar
  29. 29.
    J. Gavis, J. Mar. Res. 34:161 (1976).Google Scholar
  30. 30.
    T.R. Parsons, R.J. LaBrasseur and J.D. Fulton, J. Oceanogr. Soc. Japan 23:10 (1967).Google Scholar
  31. 31.
    T.C. Malone, NOAA Tech. Rpt. NMFS Circular 410 (1978).Google Scholar
  32. 32.
    T. Platt, in: “Spatial Pattern in Plankton Communities”, J.H. Steele, ed., Plenum, New York (1978).Google Scholar
  33. 33.
    J.W. Horwood, J. Mar. Biol. Ass. U.K. 58:487 (1978).CrossRefGoogle Scholar
  34. 34.
    R.E. Wilson, A. Okubo and W.E. Esaias, J. Mar. Res. 37:485 (1979).Google Scholar
  35. 35.
    J.H. Steele and E.W. Henderson, Deep-Sea Res. 26A:955 (1979).CrossRefGoogle Scholar
  36. 36.
    K.L. Denman and D.L. Mackas, in: “Spatial Pattern in Plankton Communities”, J.H. Steele, ed., Plenum, New York (1978).Google Scholar
  37. 37.
    J.J. Walsh, Limnol. Oceanogr. 21:1 (1976).CrossRefGoogle Scholar
  38. 38.
    J.H. Steele, Nature 248:83 (1974).CrossRefGoogle Scholar
  39. 39.
    F.E. Smith, Trans. Conn. Acad. Arts and Sci. 44:307 (1972).Google Scholar
  40. 40.
    R. Levins, “Evolution in Changing Environments”, Princeton U. Press, Princeton (1968).Google Scholar
  41. 41.
    T. Platt, K.L. Denman and A.D. Jassby, in: “The Sea”, v. 6, E.D. Goldberg, ed., John Wiley, New York (1977).Google Scholar
  42. 42.
    J. Marra, Mar. Biol. 46:191 (1978).CrossRefGoogle Scholar
  43. 43.
    J. Dera and H.R. Gordon, Limnol. Oceanogr. 13:697 (1968).CrossRefGoogle Scholar
  44. 44.
    T. Platt, Deep-Sea Res. 19:183 (1972).Google Scholar
  45. 45.
    T.J. Smayda, Oceanogr. Mar. Biol. A. Rev. 8:353 (1970).Google Scholar
  46. 46.
    P.P. Niiler and E.B. Kraus, in: “Modelling and Prediction of the Upper Layers of the Ocean”, E.B. Kraus, ed., Pergamon, New York (1977).Google Scholar
  47. 47.
    W.R. Johnson, J.C. Van Leer and C.N.K. Mooers, J. Phys. Oceanogr. 6:556 (1976).CrossRefGoogle Scholar
  48. 48.
    A.E. Gargett, T.B. Sanford and T.R. Osborn, J. Phys. Oceanogr. 9:1090 (1979).CrossRefGoogle Scholar
  49. 49.
    D. Kamykowski, J. Mar. Res. 32:67 (1974).Google Scholar
  50. 50.
    L.R. Haury, M.G. Briscoe and M.H. Orr, Nature 278:312 (1978).CrossRefGoogle Scholar
  51. 51.
    I. Langmuir, Science 87:119 (1938).CrossRefGoogle Scholar
  52. 52.
    R.T. Pollard, in: “Voyage of Discovery”, M. Angel, ed., Pergamon, New York (1977).Google Scholar
  53. 53.
    G. Assaf, R. Gerard and A.L. Gordon, J. Geophys. Res. 76:6550 (1971).CrossRefGoogle Scholar
  54. 54.
    A.L. Gordon, J. Geophys. Res. 75:4177 (1970).CrossRefGoogle Scholar
  55. 55.
    J.T. Scott, G.E. Myer, R. Stewart and E.G. Walther, Limnol. Oceanogr. 14:493 (1969).CrossRefGoogle Scholar
  56. 56.
    G.P. Harris and J.N.A. Lott, Limnol. Oceanogr. 18:584 (1973).CrossRefGoogle Scholar
  57. 57.
    A.J. Faller, Ann. Rev. Ecol. Sys. 2:201 (1971).CrossRefGoogle Scholar
  58. 58.
    C. Garrett, J. Mar. Res. 34:117 (1976).Google Scholar
  59. 59.
    R.T. Pollard, P.B. Rhines, and R.O.R.Y. Thompson, Geophys. Fluid Dyn. 4:381 (1973).Google Scholar
  60. 60.
    J. Marra, Mar. Biol. 46:203 (1978).CrossRefGoogle Scholar
  61. 61.
    K.L. Denman and T. Platt, in: “Modelling and Prediction of the Upper Layers of the Ocean”, E.B. Kraus, ed., Pergamon, New York (1977).Google Scholar
  62. 62.
    P. Young, Bull. Inst. Math. Appl. 10:209 (1974).Google Scholar
  63. 63.
    N.E. Busch and E.L. Petersen, in: “Statistical Methods and Instrumentation in Geophysics”, A.G. Kjelaas, ed., Teknologisk Forlag, Oslo (1971).Google Scholar
  64. 64.
    J.H. Ryther and E.M. Hulburt, Limnol. Oceanogr. 5:337 (1960)CrossRefGoogle Scholar
  65. 65.
    C.M. Boyd and J. Marra, J. Fish. Res. Board Can. 35:1152 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • John Marra
    • 1
  1. 1.Lamont-Doherty Geological ObservatoryPalisadesUSA

Personalised recommendations