Skip to main content

The Distribution of Absorbed Light Energy for Algal Photosynthesis

  • Chapter
Primary Productivity in the Sea

Part of the book series: Environmental Science Research ((ESRH,volume 19))

Abstract

Photosynthesis is the process through which light energy is transformed into the chemical energy useful to biological organisms. This conversion is accomplished primarily through the enzymatic reduction of carbon from the highly oxidized CO2 to the more reduced level equivalent to formaldehyde, (CH2O)n. The reactions of carbon reduction occur in the soluble phase of the cell or chloroplast and require both reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP) [1,2]. In the simple case where only the reactions of the Calvin-Benson-Bassham Cycle [2] occur, the reduction of one molecule of CO2 requires three molecules of ATP and two of NADPH. However, in many photosynthetic organisms, other biochemical pathways, such as photorespiration of “C4” metabolism [3,4,5], change the above mentioned requirements. In addition, rapid growth or “luxury accumulation” [1] may require supplemental energy inputs. Thus, the commonly quoted ratio for ATP:NADPH: CO2 of 3:2:1 must be considered a minimum for promotion of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.A. Raven, in: “The Intact Chloroplast,” J. Barber, ed., Elsiver/North Holland Biochemical Press, Amsterdam (1976).

    Google Scholar 

  2. R.R.F. Gregory, “Biochemistry of Photosynthesis,” John Wiley & Sons, Ltd., New York (1976).

    Google Scholar 

  3. I. Zelitch, “Photosynthesis, Photorespiration, and Plant Productivity,” Academic Press, New York-London (1971).

    Google Scholar 

  4. C.C. Black, Jr., Ann. Rev. Plant Physiol., 24: 253 (1973).

    Article  Google Scholar 

  5. N.E. Tolbert, in: “Algal Physiology and Biochemistry,” W.D.P. Stewart, ed., Univ. of California Press, Berkeley and Los Angeles (1974).

    Google Scholar 

  6. N.E. Tolbert, in: “Algal Physiology and Biochemistry,” W.D.P. Stewart, ed., Univ. of California Press, Berkeley and Los Angeles (1974).

    Google Scholar 

  7. A. Trebst, Ann. Rev. Plant Physiol., 25: 432 (1974).

    Article  Google Scholar 

  8. W.L. Butler, Acc. Chem. Res., 6: 117 (1972).

    Google Scholar 

  9. W. Simonis and W. Urbach, Ann. Rev. Plant Physiol., 24: 89 (1973).

    Article  Google Scholar 

  10. H. Gimmler, in: “Encyclopedia of Plant Physiology, New Series. Vol. 5. Photosynthesis I,” A. Trebst & M. Avron, eds., Springer-Verlag, Berlin (1977).

    Google Scholar 

  11. T.T. Banister and M.J. Vrooman, Plant Physiol., 39: 622 (1964).

    Article  Google Scholar 

  12. J.M. Eley and J. Myers, Plant Physiol., 42: 598 (1967).

    Article  Google Scholar 

  13. R.T. Wang and J. Myers, Photochem. Photobiol., 23: 405 (1976).

    Article  Google Scholar 

  14. C. Bonaventura and J. Myers, Biochim. Biophys. Acta, 189: 366 (1969).

    Article  Google Scholar 

  15. N. Murata, Biochim. Biophys. Acta, 189: 171 (1969).

    Article  Google Scholar 

  16. A. Reid and B. Reinhardt, Biochim, Biophys. Acta, 460: 25 (1977).

    Article  Google Scholar 

  17. M. Brody and R. Emerson, Am. J. Bot., 46: 433 (1959).

    Article  Google Scholar 

  18. C.S. Yocum and L.R. Blinks, J. Gen. Physiol., 41: 1113 (1958).

    Article  Google Scholar 

  19. L.M. Jones and J. Myers, J. Phycol., 1: 6 (1965).

    Article  Google Scholar 

  20. J. Ramus, S. Beale, D. Mauzerall, and K.L. Howard, Mar. Biol., 37: 223 (1976).

    Article  Google Scholar 

  21. N.K. Boardman, Ann. Rev. Plant Physiol., 21: 115 (1970).

    Article  Google Scholar 

  22. J.S.C. Wessels in: “Encyclopedia of Plant Physiology. New Series. Vol. 5. Photosynthesis I,” A. Trebst and M. Avron eds., Springer-Verlag, Berlin (1977).

    Google Scholar 

  23. J.P. Thornber and H.R. Highkin, Eur. J. Biochem., 41: 109 (1967).

    Article  Google Scholar 

  24. J.P. Thornber, Ann Rev. Plant Physiol., 26: 127 (1975).

    Article  Google Scholar 

  25. K. Satoh and W.L. Butler, Plant Physiol., 61: 373 (1978).

    Article  Google Scholar 

  26. J.P. Thornber, Photochem. Photobiol., 29, 1205 (1979).

    Article  Google Scholar 

  27. W.L. Butler and M. Kitajima, in “Proceedings of the Third International Congress on Photosynthesis,” M. Avron, ed., Elsevier Publ. Co., Amsterdam (1975).

    Google Scholar 

  28. W.L. Butler and M. Kitajima, Biochim. Biophys. Acta, 376: 72 (1975).

    Article  Google Scholar 

  29. W.L. Butler and R.J. Strasser, Proc. Natl. Acad. Sci. USA, 74: 3382 (1977).

    Article  Google Scholar 

  30. A.C. Ley and W.L. Butler, Plant Physiol., 65: 714 (1980).

    Article  Google Scholar 

  31. W.L. Butler, in “Chlorophyll Organization and Energy Transfer in Photosynthesis,” Ciba Foundation Symposium 61, Excerpta Medica Publ., New York (1979).

    Google Scholar 

  32. W.L. Butler, Ann. Rev. Plant Physiol., 29: 345 (1978).

    Article  Google Scholar 

  33. M. Kitajima and W.L. Butler, Biochim. Biophys. Acta, 376: 105 (1977).

    Google Scholar 

  34. W.L. Butler and M. Kitajima, Biochim. Biophys. Acta, 376: 116 (1975).

    Article  Google Scholar 

  35. W.L. Butler, in: “Encyclopedia of Plant Physiology. New Series. Vol. 5. Photosynthesis I,” A. Trebst and M. Avron, eds., Springer-Verlag, Berlin (1977).

    Google Scholar 

  36. C.P. Rijgersberg, A. Melis, J. Amesz, and J.A. Swager, in: “Chlorophyll Organization and Energy Transfer in Photosynthesis,” Ciba Foundation Symposium 61, Excerpta Medica Publ., New York (1979).

    Google Scholar 

  37. A.C. Ley and W.L. Butler in: “Photosynthetic Organelles. Special Issue of Plant and Cell Physiology,” S. Miyachi, K. Satoh, Y. Fujita, and K. Shikata, eds., Japanese Society of Plant Physiologists, Tokyo (1977).

    Google Scholar 

  38. A.C. Ley and W.L. Butler, Biochim. Biophys. Acta (in press).

    Google Scholar 

  39. A.C. Ley and W.L. Butler, Proc. Natl. Acad. Sci. USA, 73: 3957 (1976).

    Article  Google Scholar 

  40. A.C. Ley, W.L. Butler, D.A. Bryant, and A.W. Glazer, Plant Physiol., 59: 974 (1977).

    Article  Google Scholar 

  41. A.C. Ley and W.L. Butler, Biochim. Biophys. Acta, 462: 290 (1977).

    Article  Google Scholar 

  42. L. Bogorad, Ann. Rev. Plant Physiol., 26: 369 (1975).

    Article  Google Scholar 

  43. M. Brody and R. Emerson, J. Gen. Physiol., 43: 251 (1959).

    Article  Google Scholar 

  44. M. Brody and S.S. Brody, Arch. Biochem. Biophys., 96: 354 (1962).

    Article  Google Scholar 

  45. S.S. Brody and M. Brody, Arch. Biochem. Biophys., 82: 161 (1959).

    Article  Google Scholar 

  46. P. Halldal in: “Photobioloby of Microorganisms,” P. Halldal, ed., Wiley-Interscience, London (1970).

    Google Scholar 

  47. J. Myers, J. Graham, and R.T. Wang, J. Phycol., 14: 513 (1978).

    Article  Google Scholar 

  48. J.R. Waaland, S.D. Waaland, and G. Bates, J. Phycol., 10: 193 (1974).

    Google Scholar 

  49. W.L. Butler and D.W. Hopkins, Photochem. Photobiol., 12, 451 (1970).

    Article  Google Scholar 

  50. W.L. Butler and D.W. Hopkins, Photochem. Photobiol., 12: 439 (1970).

    Article  Google Scholar 

  51. W.A. Cramer and W.L. Butler, Biochim. Biophys. Acta, 153: 889 (1968).

    Article  Google Scholar 

  52. H. Kautsky and A. Hirsch, Naturwissenchaften, 19: 964 (1931).

    Article  Google Scholar 

  53. N. Murata, Biochim. Biophys. Acta, 205: 379 (1970).

    Article  Google Scholar 

  54. R.T. Wang and J. Myers, Photochem. Photobiol., 13: 411 (1976).

    Article  Google Scholar 

  55. M. Kawamura, M. Mimuro, and Y. Fujita, Plant and Cell Physiol., 20: 679 (1979).

    Google Scholar 

  56. R. Emerson and C.M. Lewis, Am. J. Bot., 30: 165 (1943).

    Article  Google Scholar 

  57. R.J. Radmer and B. Kok, in: “Encyclopedia of Plant Physiology. New Series. Vol. 5. Photosynthesis I,” A. Trebst and M. Avron, eds., Springer-Verlag, Berlin (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Ley, A.C. (1980). The Distribution of Absorbed Light Energy for Algal Photosynthesis. In: Falkowski, P.G. (eds) Primary Productivity in the Sea. Environmental Science Research, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3890-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3890-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3892-5

  • Online ISBN: 978-1-4684-3890-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics