Primary Productivity in the Sea: Reef Corals in Situ

  • James W. Porter
Part of the Environmental Science Research book series (ESRH, volume 19)


Although it is well known that primary production is generally higher in near-shore waters than in adjacent oceanic regions, this inequality in tropical reefs, where nutrient concentrations are not higher than in the oceanic water that bathes them (1), is particularly difficult to explain. Progress in answering this fundamental question has been hampered by the tremendous diversity of reef habitats and photosynthetic organisms, the methodological difficulties of working on them (2), and inaccuracies and confusion in the interpretation of data obtained in early field studies (3). In this paper, I present information on annual surface light energy inputs to a coral reef; patterns of light utilization by one group of primary producers, the reef corals; and equations designed to allow interpretation of studies on the oxygen metabolism of symbiotic invertebrates.


Coral Reef Total Kjeldahl Nitrogen Hyperbolic Tangent Function Spherical Quantum Sensor Integrate Radiant Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.V. Smith and J.A. Marsh, Limnol. Qceanogr. 18:953–961 (1973).CrossRefGoogle Scholar
  2. 2.
    J.A. Marsh and S.V. Smith, Monogr. Qceanogr. Methodol. (UNESCO) 5:361–377 (1978).Google Scholar
  3. 3.
    L.R. McCloskey, D.S. Wethey, and J.W. Porter, Monogr. Oceanogr. Methodol. (UNESCO) 5:379–396 (1978).Google Scholar
  4. 4.
    D.S. Wethey and J.W. Porter, in “Coelenterate Ecology and Behavior,” G.O. Mackie, ed., Plenum Publishing Corp., New York (1976).Google Scholar
  5. 5.
    L. Muscatine and J.W. Porter, BioScience 27:454–460 (1976).CrossRefGoogle Scholar
  6. 6.
    P. Halldal, Biol. Bull. 134:411–424 (1968).CrossRefGoogle Scholar
  7. 7.
    J.A. Marsh, Ecology 51:255–263 (1970).CrossRefGoogle Scholar
  8. 8.
    S.W. Jeffrey and G.F. Humphrey, Biochem. Physiol. Pflanz. 167:91–94 (1975).Google Scholar
  9. 9.
    P. Dustan, Bull. Mar. Sci. 29:79–95 (1979).Google Scholar
  10. 10.
    T.F. Goreau, Biol. Bull. 116:59–75 (1959).CrossRefGoogle Scholar
  11. 11.
    P.S. Davies, Biol. Bull. 158:187–194 (1980).CrossRefGoogle Scholar
  12. 12.
    H.H. Kimball, Monthly Weather Rev. 56:393–398 (1929).CrossRefGoogle Scholar
  13. 13.
    J.W. Porter, Amer. Natur. 110:731–742 (1976).CrossRefGoogle Scholar
  14. 14.
    D.S. Wethey and J.W. Porter, Nature 262:281–282 (1976).CrossRefGoogle Scholar
  15. 15.
    P.S. Davies, Proc. Third Internat. Coral Reef Symp. 1:391–396 (1977).Google Scholar
  16. 16.
    J.E. Burris, Mar. Biol. 39:371–379 (1977).CrossRefGoogle Scholar
  17. 17.
    B.G. D’Aoust, R. White, J.M. Wells, and D.A. Olsen, Undersea Biomed. Res. 3:35–40 (1976).Google Scholar
  18. 18.
    A.D. Jassby and T. Platt, Limnol. Oceanogr. 21:454–460 (1976).CrossRefGoogle Scholar
  19. 19.
    D.W. Kinsey, Monogr. Oceanogr. Methodol. (UNESCO) 5:439–468 (1978).Google Scholar
  20. 20.
    L. Muscatine and E. Cernichiari, Biol. Bull. 137:506–523 (1969).CrossRefGoogle Scholar
  21. 21.
    R.E. Johannes, S.L. Coles, and N.T. Kuenzel, Limnol. Oceanogr. 15:579–586 (1970).CrossRefGoogle Scholar
  22. 22.
    C.F. D’Elia, Limnol. Oceanogr. 22:301–315 (1977).CrossRefGoogle Scholar
  23. 23.
    C.F. D’Elia and K.L. Webb, Proc. Third Internat. Coral Reef Symp. 1:325–330 (1977).Google Scholar
  24. 24.
    L. Muscatine, H. Masuda, and R. Burnap, Bull. Mar. Sci. 29: 572–575 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • James W. Porter
    • 1
  1. 1.Department of ZoologyUniversity of GeorgiaAthensGreece

Personalised recommendations