The Phasing and Distribution of Cell Division Cycles in Marine Diatoms

  • S. W. Chisholm
  • F. M. M. Morel
  • W. S. Slocum
Part of the Environmental Science Research book series (ESRH, volume 19)


The cell division cycle of most phytoplankton cells is phased by the environmental light/dark cycle in some fashion. Evidence from culture work (e.g. 1–7) and from field studies (e.g. 8–13) consistently shows that, in most species grown on light/dark cycles, the instantaneous population division rate, μt, varies with a 24-hr periodicity. In the majority of species, division occurs primarily in the dark period (5, 14). In dinoflagellates it is usually restricted to the hours near dawn (9,12,13,15) and it appears that diatoms tend to divide more during daylight hours (7). Although these generalizations are by no means absolute, they invite speculation concerning the underlying physiological causes of division phasing in the various groups.


Generation Time Optimal Policy Population Growth Rate Cell Division Cycle Marine Diatom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.N. Edmunds, J. Cell. Comp. Physiol. 66:147 (1965).CrossRefGoogle Scholar
  2. 2.
    E.G. Jorgensen, Physiol. Plant. 19:789 (1966).CrossRefGoogle Scholar
  3. 3.
    R.W. Eppley and J.L. Coatsworth, Archiv. Mikrobiol. 55:66 (1966).CrossRefGoogle Scholar
  4. 4.
    R.W. Eppley, R.W. Holmes, and E. Paasche, Archiv. Mikrobiol. 56:305 (1967).CrossRefGoogle Scholar
  5. 5.
    D.M. Nelson and L.E. Brand, J. Phycol. 15:67 (1979).CrossRefGoogle Scholar
  6. 6.
    E. Paasche, Physiol. Plant. 20:946 (1967).CrossRefGoogle Scholar
  7. 7.
    E. Paasche, Physiol. Plant. 21:66 (1968).CrossRefGoogle Scholar
  8. 8.
    E. Swift and E.G. Durbin, Deep-Sea Res. 19:189 (1972).Google Scholar
  9. 9.
    M. Elbrachter, Oikos Suppl. 15:43 (1973).Google Scholar
  10. 10.
    T.J. Smayda, Deep-Sea Res. 20:151 (1975).Google Scholar
  11. 11.
    J. Lewin and V.N.R. Rao, J. Phycol. 11:330 (1975).Google Scholar
  12. 12.
    C.S. Weiler and S.W. Chisholm, J. Exp. Mar. Biol. Ecol. 25:239 (1976).CrossRefGoogle Scholar
  13. 13.
    C.S. Weiler, Ph.D thesis, U.C.S.D., La Jolla, Calif. (1978).Google Scholar
  14. 14.
    S.W. Chisholm and L.E. Brand, unpublished manuscript.Google Scholar
  15. 15.
    B.M. Sweeney and J.W. Hastings, J. Protozool. 5:217 (1958).Google Scholar
  16. 16.
    L.N. Edmunds, J. Cell. Physiol. 67:35 (1966).CrossRefGoogle Scholar
  17. 17.
    V.G. Bruce, J. Protozool. 17:328 (1970).Google Scholar
  18. 18.
    M. Hesse, Ph.D thesis, Göttingen (1971).Google Scholar
  19. 19.
    B.M. Sweeney, “Rhythmic Phenomena in Plants,” Academic Press, New York (1969).Google Scholar
  20. 20.
    J.D. Palmer, “An Introduction to Biological Rhythms,” Academic Press, New York (1976).Google Scholar
  21. 21.
    C.F. Ehret and J.J. Wille, in: “Photobiology of Microorganisms,” P. Holldal, ed., Wiley Interscience, London (1970).Google Scholar
  22. 22.
    S.W. Chisholm and J. Costello, J. Phycol. (in press) (1980).Google Scholar
  23. 23.
    T. Braarud, Norske Vidensk. Akad. Oslo. I. Mat. Naturv. Klasse, No. 10 (1945).Google Scholar
  24. 24.
    A. Rieth, Planta 30:294 (1939).CrossRefGoogle Scholar
  25. 25.
    R. Subrahamanyan, Proc. Indian Acad. Sci. Sec. B. 22:331 (1945).Google Scholar
  26. 26.
    J.D. Palmer, L. Livingston, and Fr. D. Zusy, Nature 203:1087 (1964).CrossRefGoogle Scholar
  27. 27.
    W.A. Glooschenko and H. Curl, Nature 218:573 (1968).CrossRefGoogle Scholar
  28. 28.
    S. Richman and J.N. Rogers, Limnol. Oceanogr. 14:701 (1969).CrossRefGoogle Scholar
  29. 29.
    D. Neuville and P. Daste, C.R. Acad. Sc. Paris, t 284, Serie D, 761 (1977).Google Scholar
  30. 30.
    S.W. Chisholm, F. Azam, and R.W. Eppley, Limnol. Oceanogr. 23(3):518 (1978).CrossRefGoogle Scholar
  31. 31.
    C Hunding, Mitt. Internat. Verein. Limnol. 21:136 (1978).Google Scholar
  32. 32.
    S.W. Chisholm, R.G. Stross, and P. Nobbs, J. Phycol. 11:367 (1975).Google Scholar
  33. 33.
    J.C. Lewin, B.E. Reiman, W.F. Busby, and B.E. Volcani, in: “Cell Synchrony,” I.L. Cameron and G.M. Padilla, eds., Academic Press, New York (1966).Google Scholar
  34. 34.
    C.D. Kelly and O. Rahn, J. Bacteriol. 23:147 (1932).Google Scholar
  35. 35.
    E.O. Powell, Biometrika 42:16 (1955).Google Scholar
  36. 36.
    E.O. Powell, J. Gen. Microbiol. 15:492 (1956).Google Scholar
  37. 37.
    D.M. Prescott, Exp. Cell Res. 16:279 (1959).CrossRefGoogle Scholar
  38. 38.
    J.R. Cook and B. Cook, Exp. Cell Res. 28:524 (1962).CrossRefGoogle Scholar
  39. 39.
    J.A. Smith and L. Martin, Proc. Nat. Acad. Sci. USA 70(4):1263 (1973).CrossRefGoogle Scholar
  40. 40.
    R.R. Klevecz, Proc. Nat. Acad. Sci. USA 73(11):4012 (1976).CrossRefGoogle Scholar
  41. 41.
    R.R. Klevecz, J. Cell Biol. 43:207 (1969).CrossRefGoogle Scholar
  42. 42.
    D.F. Petersen and E.G. Anderson, Nature 203:642 (1964).CrossRefGoogle Scholar
  43. 43.
    D. Cohen and H. Pamas, J. Theor. Biol. 56:1 (1976).CrossRefGoogle Scholar
  44. 44.
    J.L. Spudich and D.E. Koshland, Nature 262:467 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • S. W. Chisholm
    • 1
  • F. M. M. Morel
    • 1
  • W. S. Slocum
    • 1
  1. 1.Division of Water Resources and Environmental Engineering, Department of Civil Engineering, 48–425Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations