A15 Multifilamentary Superconductors by the Infiltration Process

  • M. R. Pickus
  • J. T. Holthuis
  • M. Rosen
Part of the Cryogenic Materials Series book series (CRYMS)


The morphology of practical superconductors is an essential consideration that is directly related to the requirement of conductor stability. An extensive treatment of stabilization criteria has been provided by the Rutherford Laboratory Superconducting Applications Group.1 The adiabatic criterion is perhaps the most basic. For intrinsic stability, it requires that a superconductor should not exceed a critical size that is determined by certain properties of the superconducting material. In view of the adiabatic and the other criteria, the optimal size is generally considered to be less than 10 µm. From this requirement for such small sizes stems the preferred morphology for an intrinsically stable conductor: a large number of superconducting filaments arrayed in a normal matrix. Multifilamentary conductors were readily achieved with the ductile niobium-titanium superconducting alloy, and these have been developed to a high degree of sophistication, involving twisting, braiding and cabling. However, as shown in Table 1, the superconducting properties of niobium-titanium do not compare favorably with those of the A15 compounds. Consequently a great deal of current research effort is devoted to the development of multifilamentary conductors based on the intrinsically brittle intermetallic compounds of the Nb3Sn type.


Critical Current Density Roll Speed Infiltration Process Current Carry Capacity Niobium Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. N. Wilson, C. R. Walters, J. D. Lewin, and P. F. Smith, J. Phys. D 3: 151 (1970).CrossRefGoogle Scholar
  2. 2.
    R. L. Ciardella, Report LBL-4174, 1975 (unpublished).Google Scholar
  3. 3.
    R. L. Ciardella, M. P. Dariel, J. L. F. Wang, and M. R. Pickus, IEEE Trans, on Magnetics MAG-13: 832 (1977).Google Scholar
  4. 4.
    M. R. Pickus and R. L. Ciardella, U.S. Patent 4, 088, 512 (May 1978).Google Scholar
  5. 5.
    D. P. Modi, Report LBL-4173, 1976 (unpublished).Google Scholar
  6. 6.
    J. A. Cave and T. J. Davies, Metal Sei. 8: 28 (1974).Google Scholar
  7. 7.
    M. R. Pickus, V. F. Zackay, E. R. Parker, and J. T. Holthius, Int. J. Powder Met. 9: 3 (1973).Google Scholar
  8. 8.
    M. R. Pickus, K. Hemachalam and B. N. P. Babu, Mater. Sei. Eng. 14: 265 (1974).CrossRefGoogle Scholar
  9. 9.
    M. R. Pickus, E. R. Parker, and V. F. Zackay, U.S. Patent 3,815, 224 (June 1974).Google Scholar
  10. 10.
    B. N. P. Babu, Report LBL-437, 1971 (unpublished).Google Scholar
  11. 11.
    K. Hemachalam and M. R. Pickus, J. Less Common Met. 46: 297 (1976).Google Scholar
  12. 12.
    K. Hemachalam and M. R. Pickus, IEEE Trans, on Magnetics MAG-13: 466 (1977).Google Scholar
  13. 13.
    M. R. Pickus and M. Wells, Powder Metallurgy 8: 16 (1965).Google Scholar
  14. 14.
    M. R. Pickus, Int. J. Powder Met. 5: 3 (1969).Google Scholar
  15. 15.
    D. R. Nordin, Report LBL-7346, 1978 (unpublished).Google Scholar
  16. 16.
    A. Noman, Report LBL-8501, 1978 (unpublished).Google Scholar
  17. 17.
    B. T. Matthias, T. H. Geballe, L. D. Longinotti, E. Corenzwit, G. W. Hull, J. P. Maitu, and R. N. Willens, Science 156: 645 (1967).CrossRefGoogle Scholar
  18. 18.
    J. Ruzicka, Z. Physik 237: 432 (1970).CrossRefGoogle Scholar
  19. 19.
    S. Foner, E. J. McNiff, B. T. Matthias, T. H. Geballe, R. N. Willens, and E. Corenzwit, Phys. Letters A 31: 349 (1970).CrossRefGoogle Scholar
  20. 20.
    S. D. Dahlgren and D. M. Kroeger, J. Appl. Phys. 44: 5595 (1973).CrossRefGoogle Scholar
  21. 21.
    R. Lohberg, T. W. Eager, J. M. Puffer, and R. M. Rose, Appl. Phys. Letters 22: 69 (1973).CrossRefGoogle Scholar
  22. 22.
    J. Ruzicka, Cryogenics 14: 434 (1974).CrossRefGoogle Scholar
  23. 23.
    U. Zwicker, H. J. Miericke, and H. J. Renner, Z. Metallkunde 66: 669 (1975).Google Scholar
  24. 24.
    A. Muller, J. Less Common Met. 42: 29 (1975).CrossRefGoogle Scholar
  25. 25.
    Y. D. Martynov, B. J. Beresnev, I. A. Baranov, V. Y. Meais, A. E. Fokin, S. P. Chizhik, and Yu N. Ryabinin, Fiz. Met. Metalloved. 24: 522 (1967).Google Scholar
  26. 26.
    G. J. Pech, Report LBL-7300, 1977 (unpublished).Google Scholar
  27. 27.
    C. Rutan, Report LBL-8502, 1978 (unpublished).Google Scholar
  28. 28.
    J. J. Granda, Report LBL-5772, 1976 (unpublished).Google Scholar
  29. 29.
    M. R. Pickus, M. P. Dariel, J. T. Holthuis, J. L. F. Wang, and J. Granda, Appl. Phys. Letters 29: 810 (1976).CrossRefGoogle Scholar
  30. 30.
    E. Kannatey-Asibu, Report LBL-6266, 1977 (unpublished).Google Scholar
  31. 31.
    K. Douglas, Report LBL-7629, 1978 (unpublished).Google Scholar
  32. 32.
    G. C. Quinn, Report LBL-6999, 1977 (unpublished).Google Scholar
  33. 33.
    B. Phung, Report LBL-8500, 1978 (unpublished).Google Scholar
  34. 34.
    H. Steen, A. Hellawell, Acta Met. 20: 363 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • M. R. Pickus
    • 1
  • J. T. Holthuis
    • 1
  • M. Rosen
    • 1
  1. 1.Materials and Molecular Research Division Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations