Critical Currents of Cu-(Nb1-xTax) 3Sn In Situ Multifilamentary Wires

  • R. Flükiger
Part of the Cryogenic Materials Series book series (CRYMS)


Tantalum additions to the Nb core are known to considerably increase the critical current of bronze processed Cu-Nb3Sn multifilamentary wires, particularly at magnetic fields above 12 T.1,2 The present work is an attempt to reproduce this result on wires prepared by the in situ technique. 3,4 The addition of Ta as a third component, which is easily performed on bronze processed wires, introduces, however, a fundamentally new problem for the in situ process: the step from a two-component to a three- component system makes it impossible to predict the nature of the precipitates. The formation of additional phases can practically be excluded since Ta, like Nb, is nearly immiscible with Cu in the solid state,5,6 while Ta and Nb are completely miscible. The main subsisting question is whether Ta would precipitate out of the melt in its elementary state, rather than dissolve in the Nb dendrites. The measurement of Jc at high fields allows to give a qualitative answer to this question.


Critical Current Density Graphite Crucible Composite Wire Levitation Melting Multifilamentary Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Livingston: IEEE Trans. Magn. MAG-14: 611 (1978).Google Scholar
  2. 2.
    M. Suenaga, K. Aihara, K. Kaiho, and T. S. Luhman: ICMCConf., Madison, WI (1979).Google Scholar
  3. 3.
    C. C. Tsuei: Science 180: 57 (1973).CrossRefGoogle Scholar
  4. 4.
    R. Roberge and J. L. Fihey: J. Appl. Phys. 48: 1327 (1977).CrossRefGoogle Scholar
  5. 5.
    C. S. Smith: Trans. AIME 215: 905 (1959).Google Scholar
  6. 6.
    The Constitution of Binary Alloys, M. Hansen, ed., McGraw-Hill, New York (1958).Google Scholar
  7. 7.
    J. Bevk and J. P. Harbison: J. Mat. Sci. 14: 1459 (1979).CrossRefGoogle Scholar
  8. 8.
    J. D. Verhoeven, E. D. Gibson, C. V. Owen, J. E. Ostenson, and D. K. Finnemore: Appl. Phys. Letters 35: 270 (1979).CrossRefGoogle Scholar
  9. 9.
    R. Roberge, S. Foner, E. J. McNiff, Jr., B. B. Schwartz, and J. L. Fihey: Appl. Phys. Letters 34: 111 (1979).CrossRefGoogle Scholar
  10. 10.
    S. Foner, R. Roberge, E. J. McNiff, Jr., B. B. Schwartz, and J. L. Fihey: Appl. Phys. Letters 34: 241 (1979).CrossRefGoogle Scholar
  11. 11.
    R. Fltlkiger, R. Akihama, S. Foner, E. J. McNiff, Jr., and B. B. Schwartz: Appl. Phys. Letters 35: 810 (1979).CrossRefGoogle Scholar
  12. 12.
    T. S. Luhman, K. Kaiho, and M. Suenaga, ICMC Conf., Madison,WI (1979).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. Flükiger
    • 1
  1. 1.Institut für Technische PhysikKernforschungszentrum KarlsruheKarlsruheFederal Republic of Germany

Personalised recommendations