Superconducting Properties and Coupling Mechanisms in In Situ Filamentary Composites

  • J. Bevk
  • M. Tinkham
Part of the Cryogenic Materials Series book series (CRYMS)


In situ formed superconducting filamentary composites are of considerable interest from both theoretical and practical points of view. A number of authors1 have demonstrated that these composites can carry critical currents comparable to those of the best conventional conductors with continuous Nb3Sn or V3Ga filaments and they are also remarkably insensitive to mechanical stress or strain. Along with the powder-metallurgically processed composites,2 these new materials show realistic promise for potential practical applications and can now be produced also in large quantities.3


Ultimate Tensile Strength Coupling Mechanism Superconducting Property Proximity Effect Copper Matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The work of other groups active in this field is reviewed elsewhere in these Proceedings.Google Scholar
  2. 2.
    H. C. Freyhardt and R. Bormann, these Proceedings; R. Roberge and S. Foner, these Proceedings.Google Scholar
  3. 3.
    D. K. Finnemore and J. D. Verhoeven, these Proceedings.Google Scholar
  4. 4.
    J. Bevk, J. P. Harbison, and J. L. Bell, J. Appl. Phys. 49: 6031 (1978).CrossRefGoogle Scholar
  5. 5.
    W. F. Hosford, Jr., Trans. Metall. Soc. AIME 230: 12 (1964).Google Scholar
  6. 6.
    F. Habbal and J. Bevk: AIP Conf. Proc. 58: 299 (1980).CrossRefGoogle Scholar
  7. 7.
    J. Bevk, J. P. Harbison, F. Habbal, G. R. Wagner, and A. I. Braginski: Appl. Phys. Letters 36: 85 (1980).CrossRefGoogle Scholar
  8. 8.
    A. I. Braginski, G. R. Wagner, and J. Bevk, Adv. Cryo. Eng. 26,in press.Google Scholar
  9. 9.
    M. Tinkham, unpublished.Google Scholar
  10. 10.
    See, for example, V. K. S. Shante and S. Kirkpatrick, Adv. Phys. 20:325 (1971); H. Scher and R. Zallen, J. Chem. Phys. 53: 3759 (1970); R. Zallen and H. Scher: Phys. Rev. B4: 4471 (1971).Google Scholar
  11. 11.
    A. Davidson, M. R. Beasley, and M. Tinkham: IEEE Trans. On Magnetics MAG-11: 276 (1975).Google Scholar
  12. 12.
    T. J. Callaghan and L. E. Toth: J. Appl. Phys. 46: 4013 (1975).CrossRefGoogle Scholar
  13. 13.
    A. Davidson and M. Tinkham: Phys. Rev. B13: 3261 (1976).CrossRefGoogle Scholar
  14. 14.
    C. J. Lobb, M. Tinkham, and W. J. Skocpol: Solid State Commun. 27: 1273 (1978).CrossRefGoogle Scholar
  15. 15.
    J. Bevk and J. P. Harbison, J. Mat. Sei. 14: 1457 (1979).CrossRefGoogle Scholar
  16. 16.
    R. Roberge, private communication.Google Scholar
  17. 17.
    T. Luhman and M. Suenaga: Appl. Phys. Letters 29: 61 (1976).CrossRefGoogle Scholar
  18. 18.
    J. W. Ekin: IEEE Trans, on Magnetics MAG-15: 197 (1979).Google Scholar
  19. 19.
    A. I. Braginski and J. Bevk: Bull. Am. Phys. Soc. 25: 385 (1980).Google Scholar
  20. 20.
    E. J. Kramer: J. Appl. Phys. 44: 1360 (1973).Google Scholar
  21. 21.
    T. Luhman, C. S. Pande, and D. Dew-Hughes: J. Appl. Phys. 47: 1459 (1976).CrossRefGoogle Scholar
  22. 22.
    F. Habbal, K. R. Karasek, and J. Bevk, to be published.Google Scholar
  23. 23.
    J. Bevk, F. Habbal, C. J. Lobb, and J. P. Harbison: Appl. Phys. Letters 35: 93 (1979).CrossRefGoogle Scholar
  24. 24.
    J. Bevk, F. Habbal, C. J. Lobb, and G. Dublon, Adv. Cryo. Eng., in press.Google Scholar
  25. 25.
    J. P. Harbison and J. Bevk, J. Appl. Phys. 48: 5180 (1977).CrossRefGoogle Scholar
  26. 26.
    K. R. Karasek and J. Bevk: Scripta Met. 13: 259 (1979).Google Scholar
  27. 27.
    J. Bevk and F. Habbal: Appl. Phys. Letters 36: 336 (1980).CrossRefGoogle Scholar
  28. 28.
    ac losses in in situ composites are discussed elsewhere in these Proceedings.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. Bevk
    • 1
  • M. Tinkham
    • 1
  1. 1.Division of Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations