Evidence for Microstructural Effects Under Strain in Bronze Process Nb3Sn

  • D. M. Kroeger
  • D. S. Easton
  • C. C. Koch
  • A. DasGupta
Part of the Cryogenic Materials Series book series (CRYMS)


The possible effects of externally applied strain on the flux pinning process can be divided into two groups according to whether the significant property changes produced by strain are associated with the crystalline defects which act as flux pinners, or with the bulk superconducting material which carries the supercurrent Changes in the latter are reflected in the equilibrium properties such as the upper critical field, BC2, and the Ginzburg-Landau parameter, κ. To first approximation, changes in the former are not seen in the equilibrium properties, but may affect the bulk pinning force, Fp, by changing the number of pinning centers or their strength. For want of a better term, we have called changes associated with the flux pins microstructural effects, even though they may or may not involve gross changes in structure such as the martensitic transformation which is known to occur in Nb3Sn at low temperature.


Martensitic Transformation Microstructural Change Equilibrium Property Microstructural Effect Crystalline Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Luhman, M. Suenaga, and C. J. Klamut, Adv. Cryo. Eng. 24: 325 (1978).Google Scholar
  2. 2.
    G. Rupp, IEEE Trans. Magnetics MAG-15: 189 (1979).Google Scholar
  3. 3.
    J. W. Ekin, IEEE Trans. Magnetics MAG-15: 197 (1979).Google Scholar
  4. 4.
    D. S. Easton and D. M. Kroeger, IEEE Trans. Magnetics MAG-15: 178 (1979).Google Scholar
  5. 5.
    T. Luhman, M. Suenaga, D. O. Welch, and K. Kaiho, IEEE Trans. Magnetics MAG-15: 699 (1979).Google Scholar
  6. 6.
    D. S. Easton, D. M. Kroeger, W. Specking, and C. C. Koch, to be published in J. of Appl. Phys. (1980).Google Scholar
  7. 7.
    D. S. Easton and R. E. Schwall, Appl. Phys. Letters 29: 319 (1976)Google Scholar
  8. 8.
    W. Specking, D. S. Easton, D. M. Kroeger, and P. Sanger, to be published in Adv. in Cryo. Engin. 26 (1980).Google Scholar
  9. 9.
    D. M. Kroeger, D. S. Easton, A. DasGupta, C. C. Koch, and J. O. Scarbrough, to be published in J. of Appl. Phys. (1980).Google Scholar
  10. 10.
    W. A. Fietz and W. W. Webb, Phys. Rev. 178: 657 (1969).CrossRefGoogle Scholar
  11. 11.
    E. J. Kramer, J. Appl. Phys. 44: 1360 (1973).CrossRefGoogle Scholar
  12. 12.
    R. G. Hampshire and M. T. Taylor, J. Phys. F 2: 89 (1972).CrossRefGoogle Scholar
  13. 13.
    A. M. Campbell and J. E. Evetts, Adv. Phys. 21: 199 (1972).CrossRefGoogle Scholar
  14. 14.
    D. Dew-Hughes, Philos. Mag. 30: 293 (1974).CrossRefGoogle Scholar
  15. 15.
    R. Labusch, Crys. Latt. Def. 1: 1 (1969).Google Scholar
  16. 16.
    H. R. Kerchner, J. Narayan, D. K. Christen, and S. T. Sekula, Phys. Rev. Letters 44: 1146 (1980).CrossRefGoogle Scholar
  17. 17.
    R. J. Bartlett, R. D. Taylor, and J. D. Thompson, IEEE Trans. Magnetics MAG-15: 193 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • D. M. Kroeger
    • 1
  • D. S. Easton
    • 1
  • C. C. Koch
    • 1
  • A. DasGupta
    • 1
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations