Advertisement

The Importance of Being Prestressed

Part of the Cryogenic Materials Series book series (CRYMS)

Abstract

Nb3Sn is known as a brittle material. Some measures have to be taken to fabricate a commercial superconductor which can be handled on an engineering scale. One way of solving the problem is to use an additional supportive material besides the superconductor which takes care of the forces acting on the conductor; the disadvantage is that the overall current density is reduced by this method. Fortunately there is a built-in mechanism in filamentary Nb3Sn conductors which considerably increases the flexibility of these conductors. Nb3Sn is under a compressive strain resulting from the larger thermal contraction of the surrounding bronze.

Keywords

Compressive Strain Critical Current Critical Field Force Balance Elastic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Buehler and H. J. Levinstein, J. Appl. Phys. 36: 3856 (1965).CrossRefGoogle Scholar
  2. 2.
    I. L. McDougall, IEEE Trans. Magn. MAG-11: 1467 (1975).Google Scholar
  3. 3.
    A. F. Clark, Cryogenics 16: 632 (1976).CrossRefGoogle Scholar
  4. 4.
    D. C. Larbalestier, J. E. Magraw, and M. N. Wilson, Proc. 6 th Int. Cryogenic Eng. Conf. ICEC-6: 387 (1976).Google Scholar
  5. 5.
    I. L. McDougall, Proc. 6th Int. Cryogenic Eng. Conf. ICEC-6: 396 (1976).Google Scholar
  6. 6.
    J. W. Ekin, Appl. Phys. Letters 29: 216 (1976) and IEEE Trans. Magn. MAG-13:127 (1977)Google Scholar
  7. 7.
    D. C. Larbalestier, J. E. Magraw, and M. N. Wilson, IEEE Trans. Magn. MAG-13: 462 (1977).Google Scholar
  8. 8.
    D. S. Easton and R. E. Schwall, Appl. Phys. Letters 29: 319 (1976).CrossRefGoogle Scholar
  9. 9.
    H. Hillmann, H. Kuckuck, H. Pfister, G. Rupp, E. Springer, M. Wilhelm, K. Wohlleben, and G. Ziegler, IEEE Trans. Magn. MAG-13: 792 (1977).Google Scholar
  10. 10.
    G. Rupp, IEEE Trans. Magn. MAG-13:1565 (1977) and J. Appl. Phys. 48: 3858 (1977).CrossRefGoogle Scholar
  11. 11.
    J. W. Ekin, Adv. Cryogenic Eng. 24: 306 (1978).Google Scholar
  12. 12.
    T. Luhman, M. Suenaga, and C. J. Klamut, Adv. Cryogenic Eng. 24: 325 (1978).Google Scholar
  13. 13.
    D. W. Deis, IEEE Trans. Magn. MAG-15: 189 (1979).Google Scholar
  14. 14.
    G. Rupp, IEEE Trans. Magn. MAG-15: 189 (1979).Google Scholar
  15. 15.
    J. W. Ekin, IEEE Trans. Magn. MAG-15: 197 (1979).Google Scholar
  16. 16.
    D. S. Easton and D. M. Kroeger, IEEE Trans. Magn. MAG-15: 178 (1979).Google Scholar
  17. 17.
    T. Luhman, M. Suenaga, D. 0. Welch, and K. Kaiho, IEEE Trans. Magn. MAG-15: 699 (1979).Google Scholar
  18. 18.
    R. Roberge, S. Foner, E. J. McNiff, Jr., B. B. Schwartz, and J. L. Fihey, IEEE Trans. Magn. MAG-15: 687 (1979).Google Scholar
  19. 19.
    R. Flukiger, R. Akihama, S. Foner, E. J. McNiff, Jr., and B. B. Schwartz, Appl. Phys. Letters 35: 810 (1979).CrossRefGoogle Scholar
  20. 20.
    T. F. Smith, J. Low Temp. Phys. 6: 171 (1972).CrossRefGoogle Scholar
  21. 21.
    W. A. Pupp, W. W. Sattler, and E. J. Saur, J. Low Temp. Phys. 14: 1 (1974).CrossRefGoogle Scholar
  22. 22.
    C. B. Muller and E. J. Saur, Rev. Mod. Phys. 36: 103 (1964).CrossRefGoogle Scholar
  23. 23.
    M. Pulver, Z. Phys. 257: 261 (1972).CrossRefGoogle Scholar
  24. 24.
    C. B. Muller, E. J. Saur, Adv. Cryogenics Eng. 9: 338 (1964).Google Scholar
  25. 25.
    Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, “Thermophysical Properties of Matter,” IFI/Plenum, New York (1975).Google Scholar
  26. 26.
    E. J. Kramer, J. Appl. Phys. 44: 1360 (1973).CrossRefGoogle Scholar
  27. 27.
    G. Rupp, E. J. McNiff, Jr., and S. Foner, Proc. Appl. Sc. Conf., to be published.Google Scholar
  28. 28.
    D. M. Kroeger, D. S. Easton, A. DasGupta, C. C. Koch, and J. O. Scarbrough, J. Appl. Phys. 51: 2184 (1980).CrossRefGoogle Scholar
  29. 29.
    G. Rupp, Adv. Cryogenic Eng. 26, in press.Google Scholar
  30. 30.
    D. C. Larbalestier, V. W. Edwards, J. A. Lee, C. S. Scott, and M. N. Wilson, IEEE Trans. Magn. MAG-11: 555 (1975).Google Scholar
  31. 31.
    R. P. Reed and R. P. Mikesell, “Low Temperature Mechanical Properties of Copper and Selected Copper Alloys,” NBS Monograph 101: 53 (1967).Google Scholar
  32. 32.
    S. F. Cogan, Thesis, MIT (1979) and S. F. Cogan and R. M. Rose, submitted to Cryogenics.Google Scholar
  33. 33.
    G. Rupp, Cryogenics 18: 663 (1978).CrossRefGoogle Scholar
  34. 34.
    F. R. Schwartz, “Cryogenic Materials Data Handbook,” Techn. Doc. Rep. AFML-TDR-64-280, Vol. 2: 271 (1970).Google Scholar
  35. 35.
    G. Ziegler, J. Appl. Phys. 49: 4141 (1978).CrossRefGoogle Scholar
  36. 36.
    D. S. Easton, D. M. Kroeger, W. Specking, and C. C. Koch, submitted to J. Appl. Phys.Google Scholar
  37. 37.
    T. Luhman, K. Kaiho, and M. Suenaga, Adv. Cryogenic Eng. 26, in press.Google Scholar
  38. 38.
    R. Roberge, Adv. Cryogenic Eng. 26, in press.Google Scholar
  39. 39.
    C. F. Old and J. P. Charlesworth, Cryogenics 16: 469 (1976).CrossRefGoogle Scholar
  40. 40.
    D. C. Larbalestier, J. E. Magraw, and M. N. Wilson, IEEE Trans. Magn. MAG-13: 462 (1977).Google Scholar
  41. 41.
    H. Hillmann, H. Kuckuck, E. Springer, H.-J. Weisse, M. Wilhelm, and K. Wohlleben, IEEE Trans. Magn. MAG-15: 205 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • G. Rupp
    • 1
    • 2
  1. 1.Research LaboratoriesSiemens AGErlangenF.R. Germany
  2. 2.Francis Bitter National Magnet LaboratoryM. I. T.CambridgeUSA

Personalised recommendations