Flux Pinning in Bronze-Processed Nb3Sn Wires

  • M. Suenaga
  • D. O. Welch
Part of the Cryogenic Materials Series book series (CRYMS)


With the increasing importance of multifilamentary Nb3Sn conductors for technological uses such as for the production of very high magnetic fields in fusion magnets, means of improving the superconducting critical current density Jc at very high magnetic fields (H > 10 tesla) have been sought intensively, and it has been found that metallurgical factors such as heat treatment conditions,1 alloying additions,2 and mechanical strains3 can strongly influence the critical current density. The correlation of changes in Jc with such metallurgical variations in the Nb3Sn wires has been facilitated by the use of scaling laws for magnetic flux pinning in hard süperconductors, and the scaling law developed by Kramer4 has been used frequently.5 We have found in the course of our investigations of the properties of monofilamentary Nb3Sn wires produced by the “bronze process” that the magnetic field dependence of Jc at high fields can qualitatively be characterized well by Kramer’s scaling law. However, when a detailed comparison of the scaling law and available experimental results was made, we found serious inconsistencies in the values of the parameters which appear in the scaling equation.


High Magnetic Field Magnetic Field Dependence Flux Pinning Flux Line Lattice Nb3Sn Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review see M. Suenaga, W. B. Sampson, and C. J. Klamut, IEEE Trans, on Magnetics MAG-11: 231 (1975).Google Scholar
  2. 2.
    For a review see, J. D. Livingston, Kristal und Technik 13: 1379 (1978).Google Scholar
  3. 3.
    For a review see, D. 0. Welch, to be published in Adv. Cryo. Engin. 25 (1980).Google Scholar
  4. 4.
    E. J. Kramer, J. Appl. Phys. 44: 1360 (1973).CrossRefGoogle Scholar
  5. 5.
    For example, D. U. Gubser, T. L. Francavilla, D. G. Howe, R. A. Muessner, and F. T. Ormand, IEEE Trans, on Magnetics MAG-15:385 (1979); T. S. Luhman, C. S. Pande, and D. Dew- Hughes, J. Appl. Phys. 47: 1459 (1976).CrossRefGoogle Scholar
  6. 6.
    G. Rupp, E. Springer, and S. Roth, Cryogenics, 17: 141 (1977).CrossRefGoogle Scholar
  7. 7.
    M. Suenaga, T. Onishi, D. 0. Welch, and T. S. Luhman, Bull. Am. Phys. Soc. 23:229 (1978), and unpublished data.Google Scholar
  8. 8.
    C. L. Snead, Jr. and M. Suenaga, Appl. Phys. Lett. 36: 474 (1980).CrossRefGoogle Scholar
  9. 9.
    D.K. Finnemore and J. Verhoeven, to be published in Prog, in Cryo, Engin. 25 (1980).Google Scholar
  10. 10.
    C. L. Snead, Jr. and M. Suenaga, IEEE Trans. Magnetics MAG-15: 625 (1979).Google Scholar
  11. 11.
    H. Sekine and K. Tachikawa, Appl. Phys. Lett. 35: 472 (1979).CrossRefGoogle Scholar
  12. 12.
    Y. Tanaka, K. Itoh, and K. Tachikawa, J. Japan Inst, of Metals 40: 515 (1977).Google Scholar
  13. 13.
    T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys. Rev. B 19: 4545 (1979).CrossRefGoogle Scholar
  14. 14.
    H. Wiesmann, M. Gurvitch, A. K. Ghosh, H. Lutz, O. F. Kammerer, and M. Strongin, Phys. Rev. B 17: 122 (1978).CrossRefGoogle Scholar
  15. 15.
    A. K. Ghosh and M. Strongin, Proc. of the 1979 Conf. on Superconductivity in d- and f-Band Metals, LaJolla, CA (in press).Google Scholar
  16. 16.
    F. Y. Fradin and J. D. Williamson, Phys. Rev. B 10: 2803 (1971).CrossRefGoogle Scholar
  17. 17.
    R. Viswanathan and R. Caton, Phys. Rev. B 18: 15 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • M. Suenaga
    • 1
  • D. O. Welch
    • 1
  1. 1.Division of Metallurgy and Materials ScienceBrookhaven National LaboratoryUptonUSA

Personalised recommendations