Advertisement

Cerebellar Control of Movement

  • Rodolfo R. Llinás
  • John I. Simpson

Abstract

Morphologically, the term “cerebellum” may be unambiguously used to denote the neuronal mass composed by the cerebellar cortex, the cerebellar nuclei, and the intervening white matter (the fibers that lie between these two sites). This mass is clearly separated from the rest of the central nervous system by three large fiber bundles, the cerebellar peduncles (superior, middle, and inferior). However, until now no such unambiguous description could be given for its overall physiology because owing to its intermediate location between the sensory and motor realm, its function could only be considered within the context of that of the rest of the nervous system. One may say, in fact, that in absolute terms the cerebellum does not play a primary role in either sensory or motor function; its destruction does not produce alteration of sensation or paralysis.

Keywords

Purkinje Cell Cerebellar Cortex Vestibular Nucleus Mossy Fiber Cerebellar Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Kader, G.A. The organization of the cortico pontine system of the rabbit. Journal of Anatomy, 1968, 102, 165–181.Google Scholar
  2. Adrian, E.D. Afferent areas in the cerebellum connected with the limbs. Brain, 1943, 66, 289–315.CrossRefGoogle Scholar
  3. Allen, G.I., and Tsukahara, N. Gerebrocerebellar communication systems. Physiological Reviews, 1974, 54, 957–1006.Google Scholar
  4. Allen, G.I., Sabah, N.H., and Toyama, K. Synaptic actions of peripheral nerve impulses upon Deiters’ neurones via the climbing fibre afferents. Journal of Physiology (London), 1972, 226, 311–333.Google Scholar
  5. Allen, G.I., Azzena, G.B., and Ohno, T. Somatotopically organized input from fore and hind limb areas of sensorimotor cortex to cerebellar Purkinje cells. Experimental Brain Research, 1974, 20, 255–272.Google Scholar
  6. Allen, G.I., Gilbert, P.F.G., Marini, R., Schultz, W., and Yin, T.C.T. Integration of cerebral and peripheral inputs by interpositus neurons in monkey. Experimental Brain Research, 1977, 27, 81–99.CrossRefGoogle Scholar
  7. Allen, G.I., Gilbert, P.F.C., and Yin, T.C.T. Convergence of cerebral inputs onto dentate neurons in monkey. Experimental Brain Research, 1978, 32, 151–170.CrossRefGoogle Scholar
  8. Alley, K., Baker, R., and Simpson, J.I. Afferents to the vestibulo- cerebellum and the origin of the visual climbing fibers in the rabbit. Brain Research, 1975, 98, 582–589.CrossRefGoogle Scholar
  9. Altman, J., and Carpenter, M.B. Fiber projections of the superior colliculus in the cat. Journal of Comparative Neurology, 1961, 116, 157–178.CrossRefGoogle Scholar
  10. Andersen, P., Eccles, J.C., and Voorhoeve, P.E. Postsynaptic inhibition of cerebellar Purkinje cells. Journal of Neurophysiology, 1964, 27, 1138–1153.Google Scholar
  11. Andersson, G., and Oscarsson, O. Projections to lateral vestibular nucleus from cerebellar climbing fiber zones. Experimental Brain Research, 1978a, 32, 549–564.Google Scholar
  12. Andersson, G., and Oscarsson, O. Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Experimental Brain Research, 1978b, 32, 565–579.Google Scholar
  13. Andersson, G., and Sjölund, B. The ventral spino-olivo cerebellar system in the cat. IV. Spinal transmission after administration of Clonidine and L-dopa. Experimental Brain Research, 1978, 33, 227–240.CrossRefGoogle Scholar
  14. Angaut, P. The ascending projections of the nucleus interpositus posterior of the cat cerebellum: An experimental anatomical study using silver impregnation methods. Brain Research, 1970, 24, 377–394.CrossRefGoogle Scholar
  15. Angaut, P., and Bowsher, D. Ascending projections of medial cerebellar (fastigial) nucleus: An experimental study in the cat. Brain Research, 1970, 24, 49–68.CrossRefGoogle Scholar
  16. Angaut, P., and Brodai, A. The projection of the “Vestibulocerebellum” onto the vestibular nuclei in the cat. Archives Italiennes de Biologie, 1967, 105, 441–479.Google Scholar
  17. Angaut, P., Guilbaud, G., and Reymond, M.-C. An electrophysiological study of the cerebellar projections to the nucleus ventralis lateralis of thalamus in the cat. I. Nuclei fastigii et inter-positus. Journal of Comparative Neurology, 1968, 134, 9–19.CrossRefGoogle Scholar
  18. Aoyama, M., Hongo, T., and Kudo, N. An uncrossed ascending tract originating from below Clarke’s column and conveying group I impulses from the hindlimb muscles in the cat. Brain Research, 1973, 62, 237–241.CrossRefGoogle Scholar
  19. Armstrong, D.M. Functional significance of the inferior olive. Physiological Reviews, 1974, 54, 358–417.Google Scholar
  20. Armstrong, D.M., and Harvey, R.J. Responses in the inferior olive to stimulation of the cerebellar and cerebral cortices in the cat. Journal of Physiology (London), 1966, 187, 553–574.Google Scholar
  21. Armstrong, D.M., and Rawson, J.A. Responses of neurons in nucleus interpositus of the cerebellum to cutaneous nerve volleys in the awake cat. Journal of Physiology (London), 1979a, 289, 403–423.Google Scholar
  22. Armstrong, D.M., and Rawson, J.A. Activity patterns of cerebellar cortical neurons and climbing fibre afferents in the awake cat. Journal of Physiology (London), 1979b, 289, 425–448.Google Scholar
  23. Armstrong, D.M., and Schild, R.F. An investigation of the cerebellar corticonuclear projections in the rat using an autoradiographic tracing method. I. Projections from the vermis. Brain Research, 1978a, 141, 1–9.CrossRefGoogle Scholar
  24. Armstrong, D.M., and Schild, R.F. An investigation of the cerebellar corticonuclear projections in the rat using an autoradiographic tracing method. II. Projections from the hemisphere. Brain Research, 1978b, 141, 235–249.CrossRefGoogle Scholar
  25. Armstrong, D.M., Harvey, R.J., and Schild, R.F. Branching of individual olivo-cerebellar axons to terminate in more than one subdivision of the feline cerebellar cortex, fournal of Physiology (London), 1969, 202, 106P–108P.Google Scholar
  26. Armstrong, D.M., Harvey, R.J., and Schild, R.F. Branching of inferior olivary axons to terminate in different folia, lobules or lobes of the cerebellum. Brain Research, 1973a, 54, 365–371.CrossRefGoogle Scholar
  27. Armstrong, D.M., Harvey, R.J., and Schild, R.F. Spino-olivocerebellar pathways to the posterior lobe of the cat cerebellum. Experimental Brain Research, 1973b, 18, 1–18.Google Scholar
  28. Armstrong, D.M., Harvey, R.J., and Schild, R.F. Gerebello-cerebellar responses mediated via climbing fibres. Experimental Brain Research, 1973c, 18, 19–39.Google Scholar
  29. Armstrong, D.M., Harvey, R.J., and Schild, R.F. The spatial organization of climbing fibre branching in the cat cerebellum. Experimental Brain Research, 1973d, 18, 40–58.Google Scholar
  30. Armstrong, D.M., Harvey, R.J., and Schild, R.F. Topographical localization of the olivo-cerebellar projection: An electrophysiological study in the cat. Journal of Comparative Neurology, 1974, 154, 287–302.CrossRefGoogle Scholar
  31. Armstrong, D.M., Gogdell, B., and Harvey, R.J. Effects of afferent volleys from the limbs on the discharge patterns of interpositus neurones in cats anesthetized with alpha chloralose. Journal of Physiology (London), 1975, 248, 489–517.Google Scholar
  32. Arshavsky, Y., Berkinblit, M.B., Fukson, O.I., Gelfand, I.M., and Orlovsky, G.N. Recordings of neurones of the dorsal spinocerebellar tract during evoked locomotion. Brain Research, 1972a, 43, 272–275.CrossRefGoogle Scholar
  33. Arshavsky, Y., Berkinblit, M.B., Fukson, O.I., Gelfand, I.M., and Orlovsky, G.N. Origin of modulation in neurones of the ventral spinocerebellar tract during locomotion. Brain Research, 1972b, 43, 276–279.CrossRefGoogle Scholar
  34. Avanzino, G.L., Hosli, L., and Wolstencroft, J.H. Identification of cerebellar projecting neurones in nucleus reticularis gigantocellularis. Brain Research, 1966, 3, 201–203.CrossRefGoogle Scholar
  35. Baker, J., Gibson, A., Glickstein, M., and Stein, J. Visual cells in the pontine nuclei of the cat. Journal of Physiology (London) 1976, 255, 415–433.Google Scholar
  36. Baker, R., and Berthoz, A. Is the prepositus hypoglossi nucleus the source of another vestibulo- ocular pathway? Brain Research, 1975, 86, 121–127.CrossRefGoogle Scholar
  37. Baker, R., Gresty, M., and Berthoz, A. Neuronal activity in the prepositus hypoglossi nucleus correlated with vertical and horizontal eye movement in the cat. Brain Research, 1976, 101, 366–371.CrossRefGoogle Scholar
  38. Baker, R., Berthoz, A., and Delgado-Garcia, J. Monosynaptic excitation of trochlear motoneurons following electrical stimulation of the prepositus hypoglossi nucleus. Brain Research, 1977, 121, 157–161.CrossRefGoogle Scholar
  39. Baker, R.G., Precht, W., and Llinás, R. Cerebellar modulatory action on the vestibulo-trochlear pathway in the cat. Experimental Brain Research, 1972, 15, 364–385.CrossRefGoogle Scholar
  40. Ban, M., and Ohno, T. Projection of cerebellar nuclear neurones to the inferior olive by descending collaterals of ascending fibres. Brain Research, 1977, 133, 156–161.CrossRefGoogle Scholar
  41. Bantli, H., and Bloedel, J.R. Monosynaptic activation of a direct reticulospinal pathway by the dentate nucleus. Pflügers Archiv, 1975, 357, 237–242.CrossRefGoogle Scholar
  42. Bantli, H., and Bloedel, J.R. Characteristics of the output from the dentate nucleus to spinal neurons via pathways which do not involve the primary sensorimotor cortex. Experimental Brain Research, 1976, 25, 199–220.CrossRefGoogle Scholar
  43. Bantli, H., and Bloedel, J.R. Spinal input to the lateral cerebellum mediated by infratentorial structures. Neuroscience, 1977, 2, 555–568.CrossRefGoogle Scholar
  44. Barmack, N.H. Immediate and sustained influence of visual olivocerebellar activity on eye movement. In R.E. Talbot and D.R. Humphrey (Eds.), Posture and Movement: Perspective for Integrating Sensory and Motor Research on the Mammalian Nervous System. New York: Raven, 1979.Google Scholar
  45. Batini, C., Buisseret-Delmas, C., Corvisier, J., Hardy, O., and Jassik-Gerschenfeld, D. Brain stem nuclei giving fibers to lobules VI and VII of the cerebellar vermis. Brain Research, 1978, 153, 241–261.CrossRefGoogle Scholar
  46. Batton, R.R., III, Jayaraman, A., Ruggiero, D., and Carpenter, M.B. Fastigial efferent projections in the monkey: An autoradiographic study. Journal of Comparative Neurology, 1977, 174, 281–306.CrossRefGoogle Scholar
  47. Bava, A., Cicirata, F., Licciardello, S., Volsi, G.L., and Pantó, M.R. Fastigial nuclei projections on the ventralis lateralis (VL) thalmic nucleus neurons. Brain Research, 1979, 168, 169–175.CrossRefGoogle Scholar
  48. Beitz, A.J. The topographical organization of the olivo-dentate and dentate-olivary pathways in the cat. Brain Research, 1976, 115, 311–317.CrossRefGoogle Scholar
  49. Berkley, K.J., and Hand, P.J. Projections to the inferior olive of the cat. II. Comparisons of input from the gracile, cuneate and the spinal trigeminal nuclei. Journal of Comparative Neurology, 1978, 180, 253–264.CrossRefGoogle Scholar
  50. Berkley, K.J., and Worden, I.G. Projections to the inferior olive of the cat. I. Comparisons of input from the dorsal column nuclei, the lateral cervical nucleus, the spino-olivary pathways, the cerebral cortex and the cerebellum. Journal of Comparative Neurology, 1978, 180, 237–252.CrossRefGoogle Scholar
  51. Berman, N. Connections of the pretectum in the cat. Journal of Comparative Neurology, 1977, 174, 227–254.CrossRefGoogle Scholar
  52. Bishop, G.A., McCrea, R.A., and Kitai, S.T. Afferent projections to the nucleus interpositus anterior and the lateral nucleus of the cat cerebellum. Anatomical Record, 1976a, 184, 360.Google Scholar
  53. Bishop, G.A., McCrea, R.A., and Kitai, S.T. A horseradish peroxidase study of the cortico-olivary projection in the cat. Brain Research, 1976b, 116, 306–311.CrossRefGoogle Scholar
  54. Bishop, G.A., McCrea, R.A., Lighthall, J.W., and Kitai, S.T. An HRP and autoradiographic study of the projection from the cerebellar cortex to the nucleus interpositus anterior and nucleus interpositus posterior of the cat. Journal of Comparative Neurology, 1979, 185, 735–756.CrossRefGoogle Scholar
  55. Blanks, R.H.I., Volkind, R., Precht, W., and Baker, R. Responses of cat prepositus hypoglossi neurons to horizontal angular accelerations. Neuroscience, 1977, 2, 391–403.CrossRefGoogle Scholar
  56. Bloedel, J.R. Cerebellar afferent systems: A review. Progress in Neurobiology, 1973, 2, 1–68.CrossRefGoogle Scholar
  57. Bloom, F.E., Hoffer, B.J., and Siggins, G.R. Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses. Brain Research, 1971, 25, 501–521.CrossRefGoogle Scholar
  58. Boesten, A.J.P., and Voogd, J. Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat. Journal of Comparative Neurology, 1975, 161, 215–238.CrossRefGoogle Scholar
  59. Bolk, L. Das Cerebellum der Säugetiere. Jena: Gustav Fischer, 1906.Google Scholar
  60. Boylls, C.C., Jr. A theory of cerebellar function with applications to locomotion. I. The physiological role of climbing fiber inputs in anterior lobe operation. COINS Technical Report 75C-6, Computer and Information Science, University of Massachusetts, Amherst, 1975a.Google Scholar
  61. Boylls, C.C., Jr. A theory of cerebellar function with applications to locomotion. II. The relation of anterior lobe climbing fiber function to locomotor behavior in the cat. COINS Technical Report 76–1, Computer and Information Science, University of Massachusetts, Amherst, 1975b.Google Scholar
  62. Boylls, C.C., Jr. Prolonged alterations of muscle activity induced in locomoting premammillary cats by microstimulation of the inferior olive. Brain Research, 1978, 159, 445–450.CrossRefGoogle Scholar
  63. Braitenberg, V., and Atwood, R.P. Morphological observations on the cerebellar cortex. Journal of Comparative Neurology, 1958, 109, 1–34.CrossRefGoogle Scholar
  64. Brodai, A. Experimentelle Untersuchungen über die olivocerebellare Lokalisation. Zeitschrift für die Gesamte Neurologie und Psychiatrie, 1940, 169, 1–153.CrossRefGoogle Scholar
  65. Brodai, A. The cerebellar connections of the nucleus reticularis lateralis (nucleus funiculi lateralis) in the rabbit and the cat. Experimental investigations. Acta Psychiatrica Scandinavica, 1943, 18, 171–233.CrossRefGoogle Scholar
  66. Brodai, A. Spinal afferents to the lateral reticular nucleus in the medulla oblongata of the cat. An experimental study. Journal of Comparative Neurology, 1949, 91, 259–295.CrossRefGoogle Scholar
  67. Brodai, A. Experimental demonstration of cerebellar connexions from the perihypoglossal nuclei (nucleus intercalatus, nucleus praepositus hypoglossi, and nucleus of Roller) in the cat. Journal of Anatomy (London), 1952, 86, 110–120.Google Scholar
  68. Brodai, A. Reticulo-cerebellar connections in the cat. An experimental study. Journal of Comparative Neurology, 1953, 98, 113–153.CrossRefGoogle Scholar
  69. Brodai, A. The Reticular Formation of the Brain Stem. Anatomical Aspects and Functional Correlations. Springfield, Ill.: Charles C Thomas, 1957.Google Scholar
  70. Brodai, A. The olivocerebellar projection in the cat as studied with the method of retrograde axonal transport of horseradish peroxidase. II. The projection to the uvula. Journal of Comparative Neurology, 1976, 166, 417–426.CrossRefGoogle Scholar
  71. Brodai, A., and Brodai, P. The organization of the nucleus reticularis tegmenti pontis in the cat in the light of experimental anatomical studies of its cerebral cortical afferents. Experimental Brain Research, 1971, 13, 90–110.Google Scholar
  72. Brodai, A. and Courville, J. Cerebellar corticonuclear projection in the cat Crus II. An experimental study with silver methods. Brain Research, 1973, 50, 1–23.CrossRefGoogle Scholar
  73. Brodai, A., and Gogstad, A.A. Afferent connexions of the paramedian reticular nucleus of the medulla oblongata in the cat. Acta Anatomica, 1957, 30, 133–151.CrossRefGoogle Scholar
  74. Brodai, A., and Hoddevik, G.H. The pontocerebellar projection to the uvula in the cat. Experimental Brain Research, 1978, 32, 105–116.Google Scholar
  75. Brodai, A., and Hoivik, B. Site and mode of termination of primary vestibulocerebellar fibres in the cat. An experimental study with silver impregnation methods. Archives Italiennes de Biologie 1964, 102, 1–21.Google Scholar
  76. Brodai, A., and Jansen, J. The pontocerebellar projection in the rabbit and cat. Experimental investigations. Journal of Comparative Neurology, 1946, 84, 31–118.CrossRefGoogle Scholar
  77. Brodai, A., and Jansen, J. Structural organization of the cerebellum. In J. Jansen and A. Brodai (Eds.), Aspects of Cerebellar Anatomy. Oslo: John Grundt Tanum Forlag, 1954.Google Scholar
  78. Brodai, A., and Pompeiano, O. The vestibular nuclei in the cat. Journal Anatomy (London), 1957, 91, 438–454.Google Scholar
  79. Brodai, A., and Szikla, G. The termination of the brachium conjunctivum descendens in the nucleus reticularis tegmenti pontis. An experimental anatomical study in the cat. Brain Research, 1972, 39, 337–351.CrossRefGoogle Scholar
  80. Brodai, A., and Torvik, A. Über den Ursprung der sekundären vestibulocerebellaren Fasern bei der Katze. Eine experimentell-anatomische Studie. Archiv für Psychiatrie und Nervenkrankheiten, 1957, 195, 550–567.CrossRefGoogle Scholar
  81. Brodai, A., and Walberg, F. The olivocerebellar projection in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. IV. The projection to the anterior lobe. Journal of Comparative Neurology, 1977a, 172, 85–108.CrossRefGoogle Scholar
  82. Brodai, A., and Walberg, F. The olivocerebellar projection in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. VI. The projection onto longitudinal zones of the paramedian lobule. Journal of Comparative Neurology, 1977b, 176, 281–294.CrossRefGoogle Scholar
  83. Brodai, A., Walberg, F., and Blackstad, T. Termination of spinal afferents to inferior olive in cat. Journal of Neurophysiology, 1950, 13, 431–454.Google Scholar
  84. Brodai, A., Destombes, J., Lacerda, A.M., and Angaut, P. A cerebellar projection onto the pontine nuclei. An experimental anatomical study in the cat. Experimental Brain Research, 1972, 16, 115–139.Google Scholar
  85. Brodai, A., Lacerda, A.M., Destombes, J., and Angaut, P. The pattern in the projection of the intracerebellar nuclei onto the nucleus reticularis tegmenti pontis in the cat. An experimental anatomical study. Experimental Brain Research, 1972, 16, 140–160.Google Scholar
  86. Brodai, A., Walberg, F., and Hoddevik, G.H. The olivocerebellar projection in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. Journal of Comparative Neurology, 1975, 164, 449–470.CrossRefGoogle Scholar
  87. Brodai, P. The corticopontine projection in the cat. I. Demonstration of a somatotopically organized projection from the primary sensorimotor cortex. Experimental Brain Research, 1968a, 5, 210–234.Google Scholar
  88. Brodai, P. The corticopontine projection in the cat. Demonstration of a somatotopically organized projection from the second somatosensory cortex. Archives Italiennes de Biologie, 1968b, 106, 310–332.Google Scholar
  89. Brodai, P. The corticopontine projection in the cat. I. The projection from the proreate gyrus. Journal of Comparative Neurology, 1971a, 142, 127–140.CrossRefGoogle Scholar
  90. Brodai, P. The corticopontine projection in the cat. II. The projection from the orbital gyrus. Journal of Comparative Neurology, 1971b, 142, 141–152.CrossRefGoogle Scholar
  91. Brodai, P. The corticopontine projection from the visual cortex in the cat. I. The total projection and the projection from area 17. Brain Research, 1972a, 39, 297–317.CrossRefGoogle Scholar
  92. Brodai, P. The corticopontine projection from the visual cortex in the cat. II. The projection from areas 18 and 19. Brain Research, 1972b, 39, 319–335.CrossRefGoogle Scholar
  93. Brodai, P. The corticopontine projection in the cat. The projection from the auditory cortex. Archives Italiennes de Biologie, 1972c, 110: 119–144.Google Scholar
  94. Brodai, P. Demonstration of the somatotopically organized projection onto the paramedian lobule and the anterior lobe from the lateral reticular nucleus. An experimental study with the horseradish peroxidase method. Brain Research, 1975, 95, 221–239.CrossRefGoogle Scholar
  95. Brodai, P. The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain, 1978, 101, 251–283.CrossRefGoogle Scholar
  96. Brodai, P., and Walberg, F. The pontine projection to the cerebellar anterior lobe. An experimental study in the cat with retrograde transport of horseradish peroxidase. Experimental Brain Research, 1977, 29, 233–248.Google Scholar
  97. Brodai, P., Marsala, J., and Brodai, A. The cerebral projection to the lateral reticular nucleus in the cat, with special reference to the sensorimotor cortical area. Brain Research, 1967, 6, 252–274.CrossRefGoogle Scholar
  98. Brown, J.T., Chan-Palay, V., and Palay, S.L. A study of afferent input to the inferior olivary complex in the rat by retrograde axonal transport of horseradish peroxidase. Journal of Comparative Neurology, 1977, 176, 1–22.CrossRefGoogle Scholar
  99. Bruckmoser, P., Hepp-Raymond, M.C., and Wiesendanger, M. Cortical influence on single neurons of the lateral reticular nucleus of the cat. Experimental Neurology, 1970a, 26, 239–252.CrossRefGoogle Scholar
  100. Bruckmoser, P., Hepp-Raymond, M.G., and Wiesendanger, M. Effects of peripheral, rubral and fastigial stimulation on the lateral reticular nucleus of the cat. Experimental Neurology, 1970b, 27, 388–398.CrossRefGoogle Scholar
  101. Bruggencate, G. ten, Teichmann, R., and Weller, E. Neuronal activity in the lateral vestibular nucleus of the cat. III. Inhibitory actions of cerebellar Purkinje cells evoked via mossy and climbing fiber afferents. Pflügers Archiv, 1972, 337, 147–162.CrossRefGoogle Scholar
  102. Burke, R., Lundberg, A., and Weight, F. Spinal border cell origin of the ventral spinocerebellar tract. Experimental Brain Research, 1971, 12, 283–294.CrossRefGoogle Scholar
  103. Burton, J.E., and Onoda, N. Interpositus neuron discharge in relation to a voluntary movement. Brain Research, 1977, 121, 167–172.CrossRefGoogle Scholar
  104. Burton, J.E., Bloedel, J.R., and Gregory, R.S. Electrophysiological evidence for an input to lateral reticular nucleus from collaterals of dorsal spinocerebellar and cuneocerebellar fibers. Journal of Neurophysiology, 1971, 34, 885–897.Google Scholar
  105. Carpenter, M.B., Brittin, G.M., and Pines, J. Isolated lesions of the fastigial nuclei in the cat. Journal of Comparative Neurology, 1958, 109, 65–90.CrossRefGoogle Scholar
  106. Carpenter, M.B., Stein, B.M., and Peter, P. Primary vestibulocerebellar fibers in the monkey: Distribution of fibers arising from distinctive cell groups of the vestibular ganglia. American Journal of Anatomy, 1972, 135, 221–250.CrossRefGoogle Scholar
  107. Chambers, W.W., and Sprague, J.M. Functional localization in the cerebellum. I. Organization in longitudinal corticonuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. Journal of Comparative Neurology, 1955a, 103, 105–129.CrossRefGoogle Scholar
  108. Chambers, W.W., and Sprague, J.M. Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. A.M.A. Archives of Neurology and Psychiatry, 1955b, 74, 653–680.CrossRefGoogle Scholar
  109. Chan-Palay, V. Cerebellar Dentate Nucleus, Organization, Cytology and Transmitters. Berlin: Verlag, 1977.Google Scholar
  110. Chan-Palay, V., Palay, S.L., Brown, J.T., and Van Itallie, C. Sagittal organization of olivocerebellar and reticulocerebellar projections: Autoradiographic studies with 35S-methionine. Experimental Brain Research, 1977, 30, 561–576.CrossRefGoogle Scholar
  111. Clarke, R.H., and Horsley, V. On the intrinsic fibers of the cerebellum, its nuclei and its efferent tracts. Brain, 1905, 28, 13–29.CrossRefGoogle Scholar
  112. Clendenin, M., Ekerot, C.F., Oscarsson, O., and Rosen, I. The lateral reticular nucleus in the cat. I. Mossy fiber distribution in cerebellar cortex. Experimental Brain Research, 1974a, 21, 473–486.Google Scholar
  113. Clendenin, M., Ekerot, C.F., Oscarsson, O., and Rosen, I. The lateral reticular nucleus in the cat. II. Organization of component activated from bilateral ventral flexor reflex tract. Experimental Brain Research, 1974b, 21, 487–500.Google Scholar
  114. Clendenin, M., Ekerot, C.F., and Oscarsson, O. The lateral reticular nucleus in the cat. III. Organization of component activated from ipsilateral forelimb tract. Experimental Brain Research, 1974, 21, 501–513.Google Scholar
  115. Clendenin, M., Ekerot, C.F., and Oscarsson, O. The lateral reticular nucleus in the cat. IV. Activation from dorsal funiculus and trigeminal afferents. Experimental Brain Research, 1975, 24, 131–144.CrossRefGoogle Scholar
  116. Cohen, D., Chambers, W.W., and Sprague, J.M. Experimental study of the efferent projections from the cerebellar nuclei to the brainstem of the cat. Journal of Comparative Neurology, 1958, 109, 233–259.CrossRefGoogle Scholar
  117. Combs, C.M. Electro-anatomical study of cerebellar localization-stimulation of various afferents. Journal of Neurophysiology, 1954, 17, 122–143.Google Scholar
  118. Comolli, A. Per una nuova divisione del cerveletto dei mammiferi. Archive Italiano di Anatomia e di Embriologia, 1910, 9, 247–273.Google Scholar
  119. Cook, J.R., and Wiesendanger, M. Input from trigeminal cutaneous afferents to neurones of the inferior olive in rats. Experimental Brain Research, 1976, 26, 193–202.CrossRefGoogle Scholar
  120. Cooke, J.D., Larson, B., Oscarsson, O., and Sjölund, B. Origin and termination of cuneocerebellar tract. Experimental Brain Research, 1971a, 13, 339–358.Google Scholar
  121. Cooke, J.D., Larson, B., Oscarsson, O., and Sjölund, B. Organization of afferent connections to cuneocerebellar tract. Experimental Brain Research, 1971b, 13, 359–377.Google Scholar
  122. Corvaja, N., Grofová, I., Pompeiano, O., and Walberg, F. The lateral reticular nucleus in the cat. I. An experimental anatomical study of its spinal and supraspinal afferent connections. Neuroscience, 1977, 2, 537–553.CrossRefGoogle Scholar
  123. Corvaja, N., and Pompeiano, O. Identification of cerebellar corticovestibular neurons retrogradely labeled with horseradish peroxidase. Neuroscience, 1979, 4, 507–515.CrossRefGoogle Scholar
  124. Coulter, J.D., Mergner, T., and Pompeiano, O. Effect of tilting on the responses of lateral reticular nucleus neurons to somatic afferent stimulation. Archives Italiennes de Biologie, 1977, 115, 294–331.Google Scholar
  125. Courville, J. Rubrobulbar fibres to the facial nucleus and the lateral reticular nucleus (nucleus of the lateral funiculus). An experimental study in the cat with silver impregnation methods. Brain Research, 1966a, 1, 317–337.CrossRefGoogle Scholar
  126. Courville, J. Somatotopical organization of the projection from the nucleus interpositus anterior of the cerebellum to the red nucleus. An experimental study in the cat with silver impregnation methods. Experimental Brain Research, 1966b, 2, 191–215.CrossRefGoogle Scholar
  127. Courville, J., and Coulombe, G. Pontine projection to cerebellar cortex and nuclei. Society for Neuroscience Abstracts, 1977, 3, 56.Google Scholar
  128. Courville, J., and Diakiw, N. Cerebellar corticonuclear projection in the cat. The vermis of the anterior and posterior lobes. Brain Research, 1976, 110, 1–20.CrossRefGoogle Scholar
  129. Courville, J., and Faraco-Cantin, F. On the origin of the climbing fibers of the cerebellum. An experimental study in the cat with an autoradiographic tracing method. Neuroscience, 1978, 3, 797–809.CrossRefGoogle Scholar
  130. Courville, J., and Otabe, S. The rubro-olivary projection in the macaque: An experimental study with silver impregnation methods. Journal of Comparative Neurology, 1974, 158, 479–494.CrossRefGoogle Scholar
  131. Courville, J., Diakiw, N., and Brodai, A. Cerebellar corticonuclear projection in the cat. The paramedian lobule. An experimental study with silver methods. Brain Research, 1973, 50, 25–45.CrossRefGoogle Scholar
  132. Courville, J., Augustine, J.R., and Martel, P. Projections from the inferior olive to the cerebellar nuclei in the cat demonstrated by retrograde transport of horseradish peroxidase. Brain Research, 1977, 130, 405–419.CrossRefGoogle Scholar
  133. Crichlow, E.C., and Kennedy, T.T. Functional characteristics of neurons in the lateral reticular nucleus with reference to localized cerebellar pontentials. Experimental Neurology, 1967, 18, 141–153.CrossRefGoogle Scholar
  134. Grill, W.E. Unitary multiple-spiked responses in the cat inferior olive nucleus. Journal of Neurophysiology, 1970, 33, 199–209.Google Scholar
  135. Cummings, J.F., and Petras, J.M. The origin of spinocerebellar pathways. I. The nucleus cervicalis centralis of the cranial cervical spinal cord. Journal of Comparative Neurology, 1977, 173, 655–692.CrossRefGoogle Scholar
  136. Desclin, J.C. Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Research, 1974a, 77, 365–384.CrossRefGoogle Scholar
  137. Desclin, J.C. Démonstration en microscopie optique de la dégénérescence terminale ď afférences d’origine olivarire inférieure dans le noyau vestibulaire latéral (Deiters’) chez le rat. Comptes Rendus de L’Académie des Sciences, Série D (Paris), 1974b, 278, 2931–2934.Google Scholar
  138. Desclin, J.C. Early terminal degeneration of cerebellar climbing fibers after destruction of the inferior olive in the rat. Synaptic relationships in the molecular layer. Anatomical Embryology, 1976, 149, 87–112.CrossRefGoogle Scholar
  139. Dom, R., King, J.S., and Martin, G.F. Evidence for two direct cerebello-olivary connections. Brain Research, 1973, 57, 498–501.CrossRefGoogle Scholar
  140. Dow, R.S. The fiber connections of the posterior parts of the cerebellum in the rat and cat. Journal of Comparative Neurology, 1936, 63, 527–548.CrossRefGoogle Scholar
  141. Dow, R.S. Efferent connections of the flocculonodular lobe in Macaca mulatto. Journal of Comparative Neurology, 1938, 68, 297–305.CrossRefGoogle Scholar
  142. Dow, R.S. Cerebellar action potentials in response to stimulation of various afferent connections. Journal of Neurophysiology, 1939, 2, 543–555.Google Scholar
  143. Dow, R.S. The evolution and anatomy of the cerebellum. Biological Reviews, 1942, 17, 179–220.CrossRefGoogle Scholar
  144. Dow, R.S. Some aspects of cerebellar physiology. Journal of Neurosurgery, 1961, 18, 512–530.CrossRefGoogle Scholar
  145. Dow, R.S., and Moruzzi, G. The Physiology and Pathology of the Cerebellum. Minneapolis: University of Minnesota Press, 1958.Google Scholar
  146. Dufossé, M., Ito, M., and Miyashita, Y. Functional localization in the rabbit’s flocculus determined in relationship with eye movements. Neuroscience Letters, 1977, 5, 273–277.CrossRefGoogle Scholar
  147. Eccles, J.C., Llinás, R., and Sasaki, K. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. Journal of Physiology (London), 1966a, 182, 268–296.Google Scholar
  148. Eccles, J.C., Llinás, R., and Sasaki, K. Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Experimental Brain Research, 1966b, 1, 17–39.Google Scholar
  149. Eccles, J.C., Llinás, R., and Sasaki, K. The mossy fibre-granule cell relay of the cerebellum and its inhibitory control of Golgi cells. Experimental Brain Research, 1966c, 1, 82–101.Google Scholar
  150. Eccles, J.C., Proviní, L., Strata, P., and Táboříková, H. Analysis of electrical potentials evoked in the cerebellar anterior lobe by stimulation of hindlimb and forelimb nerves. Experimental Brain Research, 1968a, 6, 171–194.CrossRefGoogle Scholar
  151. Eccles, J.C., Provini, L., Strata, P., and Táboříková, H. Topographical investigations on the climbing fiber inputs from forelimb and hindlimb afferents to the cerebellar anterior lobe. Experimental Brain Research, 1968b, 6, 195–215.CrossRefGoogle Scholar
  152. Eccles, J.C., Faber, D.S., Murphy, J.T., Sabah, N.H., and Táboříková, H. Investigations on integration of mossy fiber inputs to Purkinje cells in the anterior lobe. Experimental Brain Research, 1971, 13, 54–77.CrossRefGoogle Scholar
  153. Eccles, J.C., Sabah, N.H., Schmidt, R.F., and Táboříková, H. Integration of Purkyne cells, mossy and climbing fiber inputs from cutaneous mechanoreceptors. Experimental Brain Research, 1972, 15, 498–520.CrossRefGoogle Scholar
  154. Eccles, J.C., Rantucci, T., Rosén, I., Scheid, P., and Táboříková, H. Somatotopic studies on cerebellar interpositus neurons. Journal of Neurophysiology, 1974, 37, 1449–1459.Google Scholar
  155. Eccles, J.C., Rantucci, T., Sabah, N.H., and Táboříková, H. Somatotopic studies of the cerebellar fastigial cells. Experimental Brain Research, 1974, 19, 100–118.CrossRefGoogle Scholar
  156. Eccles, J.C., Rosén, I., Scheid, P., and Táboříková, H. Temporal patterns of responses of interpositus neurones to peripheral afferent stimulation. Journal of Neurophysiology, 1974a, 37, 1424–1437.Google Scholar
  157. Eccles, J.G., Rosén, I., Scheid, P., and Táboříková, H. Patterns of convergence onto interpositus neurones from peripheral afferents. Journal of Neurophysiology, 1974b, 37, 1438–1448.Google Scholar
  158. Eccles, J.G., Sabah, N.H., and Táboříková, H. Excitatory and inhibitory responses of neurons of the cerebellar fastigial nucleus. Experimental Brain Research, 1974a, 19, 61–77.CrossRefGoogle Scholar
  159. Eccles, J.C., Sabah, N.H., and Táboříková, H. The pathways responsible for excitation and inhibition of fastigial neurones. Experimental Brain Research, 1974b, 19, 78–99.CrossRefGoogle Scholar
  160. Eccles, J.C., Nicoll, R.A., Schwarz, D.W., Táboříková, H., and Willey, T.J. Reticulospinal neurons with and without monosynaptic inputs from cerebellar nuclei. Journal of Neurophysiology, 1975, 38, 513–530.Google Scholar
  161. Eccles, R.M., and Lundberg, A. Synaptic action in motoneurons by afferents which may evoke the flexion reflex. Archives Italiennes de Biologie, 1959, 97, 199–221.Google Scholar
  162. Edinger, L. Ueber die Einteilung des Cerebellums. Anatomischer Anzeiger, 1910, 35, 319–338.Google Scholar
  163. Edwards, S.B. The ascending and descending projections of the red nucleus in the cat: An experimental study using an autoradiographic tracing method. Brain Research, 1972, 48, 45–64.CrossRefGoogle Scholar
  164. Edwards, S.B. Autoradiographic studies of the projections of the midbrain reticular formation. Descending projections of the nucleus cuneiformis. Journal of Comparative Neurology, 1975, 161, 341–358.CrossRefGoogle Scholar
  165. Edwards, S.B., Rosenquist, A.C., and Palmer, L.A. An autoradiographic study of ventral lateral geniculate projections in the cat. Brain Research, 1974, 72, 282–287.CrossRefGoogle Scholar
  166. Ekerot, C.F., and Larson, B. Differential termination of the exteroceptive and proprioceptive components of the cuneocerebellar tract. Brain Research, 1972, 36, 420–424.CrossRefGoogle Scholar
  167. Ekerot, C.F., and Larson, B. Correlation between sagittal projection zones of climbing and mossy fibre paths in cat cerebellar anterior lobe. Brain Research, 1973, 64, 446–450.CrossRefGoogle Scholar
  168. Ekerot, C.F., and Larson, B. The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Experimental Brain Research, 1979a, 36, 201–217.CrossRefGoogle Scholar
  169. Ekerot, C.F., and Larson, B. The dorsal spino-olivocerebellar system in the cat. II. Somatotopical organization. Experimental Brain Research, 1979b, 36, 219–232.CrossRefGoogle Scholar
  170. Eller, T., and Chan-Palay, V. Afferents to the cerebellar lateral nucleus: Evidence for retrograde transport of horseradish peroxidase after pressure injections from micropipettes. Journal of Comparative Neurology, 1976, 166, 285–302.CrossRefGoogle Scholar
  171. Escobar, A., Sampedro, E.D., and Dow, R.S. Quantitative data on the inferior olivary nucleus in man, cat and vampire bat. Journal of Comparative Neurology, 1968, 132, 397–404.CrossRefGoogle Scholar
  172. Estable, C. Notes sur la structure comparative de l’écorce cérébelleuse et dérivées physiologiques possibles. Trabajos del Laboratorio de Investigaciónes Biologicas de la Universidad de Madrid, 1923, 21, 169–256.Google Scholar
  173. Evarts, E.V., and Thach, W.T. Motor mechanisms of the CNS: Cerebro-cerebellar interrelations. Annual Review of Physiology, 1969, 31, 451–498.CrossRefGoogle Scholar
  174. Faber, D.S., and Murphy, J.T. Axonal branching in the climbing fiber pathway to the cerebellum. Brain Research, 1969, 15, 262–267.CrossRefGoogle Scholar
  175. Flood, S., and Jansen, J. On the cerebellar nuclei in the cat. Acta Anatomy, 1961, 46, 52–72.CrossRefGoogle Scholar
  176. Flumerfelt, B.A., Otabe, S., and Courville, J. Distinct projections to the red nucleus from the dentate and interposed nuclei in the monkey. Brain Research, 1973, 50, 408–414.CrossRefGoogle Scholar
  177. Fox, C.A. The intermediate cells of lugaro in the cerebellar cortex of the monkey. Journal of Comparative Neurology, 1959, 112, 39–54.CrossRefGoogle Scholar
  178. Fox, C.A., Siegesmund, K.A., andDutta, C.R. The Purkinje cell dendritic branchlets and their relation with the parallel fibers: Light and electron microscopic observations. In M.M. Cohen and R.S. Snider (Eds.), Morphological and Biochemical Correlates of Neural Activity. New York: Harper and Row, 1964.Google Scholar
  179. Fox, C.A., Hillman, D., Siegesmund, K.A., and Dutta, C.R. The primate cerebellar cortex: A Golgi and electron microscopical study. Progress in Brain Research, 1967, 25, 174–225.CrossRefGoogle Scholar
  180. Frankfurter, A., Weber, J.T., and Harting, J.K. Brain stem projections to lobule VII of the posterior vermis in the squirrel monkey: As demonstrated by the retrograde axonal transport of tritiated horseradish peroxidase. Brain Research, 1977, 124, 135–139.CrossRefGoogle Scholar
  181. Frederickson, R.C.A., Neuss, M., Morzorati, S.L., and McBride, W.J. A comparison of the inhibitory effects of taurine and GABA on identified Purkinje cells and other neurons in the cerebellar cortex of the rat. Brain Research, 1978, 145, 117–126.CrossRefGoogle Scholar
  182. Freedman, R., Hoffer, B.J., Woodward, D.J., and Puro, D. Interaction of norepinephrine and climbing fibers. Experimental Neurology, 1977, 55, 269–288.CrossRefGoogle Scholar
  183. Fukuda, J., Highstein, S.M., and Ito, M. Cerebellar control of the vestibulo-ocular reflex investigated in rabbit 3rd nucleus. Experimental Brain Research, 1972, 14, 511–526.CrossRefGoogle Scholar
  184. Furuya, N., Kawano, K., and Shimazu, H. Functional organization of vestibulofastigial projection in the horizontal semicircular canal system in the cat. Experimental Brain Research, 1975, 24, 75–87.CrossRefGoogle Scholar
  185. Gibson, A., Baker, J., Mower, G., and Glickstein, M. Corticopontine cells in area 18 of the cat. Journal of Neurophysiology, 1978, 41, 484–495.Google Scholar
  186. Gould, B.B. The organization of afferents to the cerebellar cortex in the cat: Projections from the deep cerebellar nuclei. Journal of Comparative Neurology, 1979, 184, 27–42.CrossRefGoogle Scholar
  187. Gould, B.B., and Graybiel, A.M. Afferents to the cerebellar cortex in the cat: Evidence for an intrinsic pathway leading from the deep nuclei to the cortex. Brain Research, 1976, 110, 601–611.CrossRefGoogle Scholar
  188. Graham, J. An autoradiographic study of the efferent connections of the superior colliculus in the cat. Journal of Comparative Neurology, 1977, 173, 629–654.CrossRefGoogle Scholar
  189. Grant, G. Projection of the external cuneate nucleus onto the cerebellum in the cat: An experimental study using silver methods. Experimental Neurology, 1962a, 5, 179–195.CrossRefGoogle Scholar
  190. Grant, G. Spinal course and somatotopically localized termination of the spinocerebellar tracts: An experimental study in the cat. Acta Physiologica Scandinavica, 1962b, 56,(193), 45.Google Scholar
  191. Grant, G., Oscarsson, O., and Rosen, I. Functional organization of the spino-reticulocerebellar path with identification of its spinal component. Experimental Brain Research, 1966, 1, 306–319.Google Scholar
  192. Graybiel, A.M. Some efferents of the pretectal region in the cat. Anatomical Record, 1974a, 178, 365.Google Scholar
  193. Graybiel, A.M. Visuo-cerebellar and cerebello-visual connections involving the ventral lateral geniculate nucleus. Experimental Brain Research, 1974b, 20, 303–306.CrossRefGoogle Scholar
  194. Graybiel, A.M. Organization of oculomotor pathways in the cat and rhesus monkey. In R. Baker and A. Berthoz (Eds.), Control of Gaze by Brain Stem Neurons. New York: Elsevier/North Holland, 1977.Google Scholar
  195. Graybiel, A.M., and Hartwieg, E.A. Some afferent connections of the oculomotor complex in the cat: An experimental study with tracer techniques. Brain Research, 1974, 81, 543–551.CrossRefGoogle Scholar
  196. Graybiel, A.M., Nauta, H.J.W., Lasek, R.J., and Nauta, W.J.H. A cerebello-olivary pathway in the cat: An experimental study using autoradiographic tracing techniques. Brain Research, 1973, 58, 205–211.CrossRefGoogle Scholar
  197. Gresty, M., and Baker, R. Neurons with visual receptive field, eye movement, neck displacement sensitivity within and around the nucleus prepositus hypoglossi in the alert cat. Experimental Brain Research, 1976, 24, 429–433.CrossRefGoogle Scholar
  198. Grillner, S., Hongo, T., and Lund, S. The origin of descending fibers monosynaptically activating spinoreticular neurons. Brain Research, 1968, 10, 259–262.CrossRefGoogle Scholar
  199. Groenewegen, H.J., and Voogd, J. The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of the cat cerebellum. Journal of Comparative Neurology, 1977, 174, 417–488.CrossRefGoogle Scholar
  200. Groenewegen, H.J., Boesten, A.J.P., and Voogd, J. The dorsal column nuclear projections to the nucleus ventralis posterior lateralis thalami and the inferior olive in the cat: An autoradiographic study. Journal of Comparative Neurology, 1975, 162, 505–518.CrossRefGoogle Scholar
  201. Groenewegen, H.J., Voogd, J., and Freedman, S.L. The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. Journal of Comparative Neurology, 1979, 183, 551–602.CrossRefGoogle Scholar
  202. Haines, D.E. Cerebellar cortical efferents of the posterior lobe vermis in a prosimian primate (Galago) and tree shrew (Tupaia). Journal of Comparative Neurology, 1975, 163, 21–40.CrossRefGoogle Scholar
  203. Haines, D.E. Cerebellar corticonuclear and corticovestibular fibers of the anterior lobe vermis in a prosimian primate (Galago senegalensis). Journal of Comparative Neurology, 1976, 170, 67–96.CrossRefGoogle Scholar
  204. Haines, D.E. Contralateral nucleocortical cells of the paraflocculus of tree shrew (Tupaia). Neuroscience Letters, 1978, 8, 183–190.CrossRefGoogle Scholar
  205. Haines, D.E., and Rubertone, J.A. Cerebellar corticonuclear fibers: Evidence of zones in the primate anterior lobe. Neuroscience Letters, 1977, 6, 231–236.CrossRefGoogle Scholar
  206. Haines, D.E., and Rubertone, J.A. Cerebellar corticonuclear fibers of the dorsal culminate lobule (anterior lobe, lobule V) in a prosimian primate, Galago senegalensis. Journal of Comparative Neurology, 1979, 186, 321–342.CrossRefGoogle Scholar
  207. Hámori, J., and Szentágothai, J. The Purkinje cell baskets: Ultrastructure of an inhibitory synapse. Acta Biologica Academiae Scientiarum Hungaricae, 1965, 15, 465–479.Google Scholar
  208. Hámori, J., and Szentágothai, J. Identification under the electron microscope of climbing fibers and their synaptic contacts. Experimental Brain Research, 1966, 1, 65–81.CrossRefGoogle Scholar
  209. Hampson, J.L. Relationships between cat cerebral and cerebellar cortices. Journal of Neurophysiology, 1949, 12, 37–50.Google Scholar
  210. Hampson, J.L., Harrison, C.R., and Woolsey, C.N. Cerebro-cerebellar projections and the soma-totopic localization of motor function in the cerebellum. In P. Bard (Ed.), Research Publications of the Association for Research in Nervous and Mental Disease. Vol. 30: Patterns of Organization in the Nervous System. Baltimore: Williams & Wilkins, 1952.Google Scholar
  211. Harting, J.K. Descending pathways from the superior colliculus: An autoradiographic analysis in the rhesus monkey (Macaca mulatta). Journal of Comparative Neurology, 1977, 173, 583–612.CrossRefGoogle Scholar
  212. Hayashi, M. Einige wichtige Tatsachen aus der ontogenetischen Entwicklung des menschlichen Kleinhirns. Deutsche Zeitschrift für Nervenheilkunde, 1924, 81, 74–82.CrossRefGoogle Scholar
  213. Hekmatpanah, J. Organization of tactile dermatomes C1 through L4 in cat. Journal of Neurophysiology, 1961, 24, 131–140.Google Scholar
  214. Henkel, C.K., Linauts, M., and Martin, G.F. The origin of the annulo-olivary tract with notes on other mesencephalo-olivary pathways. A study by the horseradish peroxidase method. Brain Research, 1975, 100, 145–150.CrossRefGoogle Scholar
  215. Hess, R., and Simpson, J.I. Visual and somatosensory messages to the rabbit’s cerebellar flocculus. Neuroscience Letters, Supplement, 1978, 1, 146.Google Scholar
  216. Highstein, S.M. Synaptic linkage in the vestibulo-ocular and cerebello-vestibular pathways to the Vlth nucleus in the rabbit. Experimental Brain Research, 1973, 17, 301–314.Google Scholar
  217. Hillman, D.E. Morphological organization of the frog cerebellar cortex: A light and electron microscopic study. Journal of Neurophysiology, 1969a, 32, 818–846.Google Scholar
  218. Hillman, D.E. Neuronal organization of the cerebellar cortex in amphibia and reptilia. In R. Llinás (Ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association, 1969b.Google Scholar
  219. Hoddevik, G.H. The pontocerebellar projection onto the paramedian lobule in the cat: An experimental study with the use of horseradish peroxidase as a tracer. Brain Research, 1975, 95, 291–307.CrossRefGoogle Scholar
  220. Hoddevik, G.H. The pontine projection to the flocculus studied by means of retrograde axonal transport of horseradish peroxidase in the rabbit. Experimental Brain Research, 1977, 30, 511–526.CrossRefGoogle Scholar
  221. Hoddevik, G.H. The projection from nucleus reticularis tegmenti pontis onto the cerebellum in the cat. Anatomy and Embryology, 1978, 153, 227–242.CrossRefGoogle Scholar
  222. Hoddevik, G.H., and Brodai, A. The olivocerebellar projection studied with the method of retrograde axonal transport of horseradish peroxidase. V. The projections to the flocculonodular lobe and the paraflocculus in the rabbit. Journal of Comparative Neurology, 1977, 176, 269–280.CrossRefGoogle Scholar
  223. Hoddevik, G.H., Brodai, A., and Walberg, F. The olivocerebellar projection in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. III. The projection to the vermal visual area. Journal of Comparative Neurology, 1976, 169, 155–170.CrossRefGoogle Scholar
  224. Hoddevik, G.H., Brodai, A., Kawamura, K., and Hashikawa, T. The pontine projection in cerebellar vermal visual area studied by means of retrograde axonal transport of horseradish peroxidase. Brain Research, 1977, 123, 209–227.CrossRefGoogle Scholar
  225. Hodgkin, A.L. The local electric changes associated with repetitive action in a nonmedulated axon. Journal of Physiology (London), 1948, 107, 165–181.Google Scholar
  226. Hohman, L.B. The efferent connections of the cerebellar cortex: Investigations based upon experimental extirpations in the cat. In F. Tilney, T.K. Davis, and H.A. Riley (Eds.), Research Publications of the Association for Research in Nervous and Mental Disease (Vol. VI). Baltimore: Williams & Wilkins Co., 1929.Google Scholar
  227. Holmqvist, B., and Lundberg, A. Differential supraspinal control of synaptic actions evoked by volleys in the flexion reflex afferents in alpha motoneurons. Acta Physiologica Scandinavica 1961, 54 Supplementum 186, 1–51.Google Scholar
  228. Holmqvist, B., Oscarsson, O., and Rosen, I. Functional organization of the cuneocerebellar tract in the cat. Acta Physiologica Scandinavica, 1963, 58, 216–235.CrossRefGoogle Scholar
  229. Hubbard, J.I., and Oscarsson, O. Localization of the cell bodies of the ventral spinocerebellar tract in lumbar segments of the cat. Journal of Comparativé Neurology, 1962, 118, 199–204.CrossRefGoogle Scholar
  230. Ingvar, S. Zur Phylo- und Ontogenese des Kleinhirns. Folia Neurobiology, 1918, 11, 205–495.Google Scholar
  231. Ingvar, S. On cerebellar localization. Brain, 1923, 46, 301–335.CrossRefGoogle Scholar
  232. Ingvar, S. Studies in neurology. I. The phylogenetic continuity of the central nervous system. II. On cerebellar function. Bulletin of the Johns Hopkins Hospital, 1928, 43, 315–362.Google Scholar
  233. Ishikawa, J., Kawaguchi, S., and Rowe, M.J. Actions of afferent impulses from muscle receptors on cerebellar Purkyne cells. II. Responses to muscle contraction: Effects mediated via the climbing fiber pathway. Experimental Brain Research, 1972, 16, 104–114.CrossRefGoogle Scholar
  234. Ito, M. Neural design of the cerebellar motor control system. Brain Research, 1972a, 40, 81–84.CrossRefGoogle Scholar
  235. Ito, M. Cerebellar control of the vestibular neurons: Physiology and pharmacology. Progress in Brain Research, 1972b, 37, 377–390.CrossRefGoogle Scholar
  236. Ito, M. Adaptive modification of the vestibulo-ocular reflex in rabbits affected by visual inputs and its possible neuronal mechanisms. Progress in Brain Research, 1979, 50, 757–761.CrossRefGoogle Scholar
  237. Ito, M., and Yoshida, M. The cerebellar-evoked monosynaptic inhibition of Deiters’ neurons. Experimentia, 1964, 20, 515.CrossRefGoogle Scholar
  238. Ito, M., and Yoshida, M. The origin of cerebellar-induced inhibition of Deiters’ neurons. I. Monosynaptic initiation of the inhibitory postsynaptic potentials. Experimental Brain Research, 1966, 2, 330–349.Google Scholar
  239. Ito, M., Yoshida, M., and Obata, K. Monosynaptic inhibition of the intracerebellar nuclei induced from the cerebellar cortex. Experimentia, 1964, 20, 575–576.CrossRefGoogle Scholar
  240. Ito, M., Obata, K., and Ochi, R. The origin of cerebellar-induced inhibition of Deiters’ neurons. II. Temporal correlation between the trans-synaptic activation of Purkinje cells and the inhibition of Deiters neurons. Experimental Brain Research, 1966, 2, 350–364.Google Scholar
  241. Ito, M., Yoshida, M., Obata, K., Kawai, N., and Udo, M. Inhibitory control of intracerebellar nuclei by the Purkinje cell axons. Experimental Brain Research, 1970, 10, 64–80.CrossRefGoogle Scholar
  242. Ito, M., Nisimaru, N., and Yamamoto, M. Specific patterns of neuronal connexions involved in the control of the rabbit’s vestibuloocular reflexes by the cerebellar flocculus. Journal of Physiology (London), 1977, 265, 833–854.Google Scholar
  243. Itoh, K. Efferent projections of the pretectum in the cat. Experimental Brain Research, 1977, 30, 89–105.Google Scholar
  244. Jakob, A. Däs Kleinhirn. In von Möllendorff (Ed.), Handbuch der mikroskopischen Anatomie des Menschen, IV: 1. Berlin: Springer, 1928a.Google Scholar
  245. Jakob, A. Zur Problem der morphologischen und funktionellen Gliederung des Kleinhirns. Deutsche Zeitschrift für Nervenheilkunde, 1928b, 105, 217–233.CrossRefGoogle Scholar
  246. Jansen, J., and Brodai, A. Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico-nuclear projection. Journal of Comparative Neurology, 1940, 73, 267–321.CrossRefGoogle Scholar
  247. Jansen, J., and Brodai, A. Experimental studies on the intrinsic fibers of the cerebellum. The cortico-nuclear projection in the rabbit and the monkey (Macacus rhesus). Skrifter Utgill av det Norske Videnskaps-Academi i Oslo, I. Matematisk-Naturvidenskapelig Klasse, 1942, 3, 1–50.Google Scholar
  248. Jansen, J., and Brodai, A. (Eds.). Aspects of Cerebellar Anatomy. Oslo: J.G. Tanum, 1954.Google Scholar
  249. Kawamura, K. The pontine projection from the inferior colliculus in the cat. An experimental anatomical study. Brain Research, 1975, 95/309–322.Google Scholar
  250. Kawamura, K., and Brodai, A. The tectopontine projection in the cat: An experimental anatomical study with comments on pathways for teleceptive impulses to the cerebellum. Journal of Comparative Neurology, 1973, 149, 371–390.CrossRefGoogle Scholar
  251. Kawamura, K., and Hashikawa, T. Olivocerebellar projections in the cat studied by means of anterograde axonal transport of labeled amino acids as tracers. Neuroscience, 1979, 4, 1615–1633.CrossRefGoogle Scholar
  252. Kawamura, K., Brodai, A., and Hoddevik, G. The projection of the superior colliculus onto the reticular formation of the brain stem. An experimental anatomical study in the cat. Experimental Brain Research, 1974, 19, 1–19.CrossRefGoogle Scholar
  253. King, J.S., Andrezik, J.A., Falls, W.M., and Martin, G.F. Synaptic organization of cerebello-olivary circuit. Experimental Brain Research, 1976, 26, 159–170.CrossRefGoogle Scholar
  254. Kitai, S.T., Kennedy, D.T., Morin, F., and Gardner, E. The lateral reticular nucleus of the medulla oblongata of the cat. Experimental Neurology, 1967, 17, 65–73.CrossRefGoogle Scholar
  255. Kitai, S.T., DeFrance, J.F., Hatada, K., and Kennedy, D.T. Electrophysiological properties of lateral reticular nucleus cells: II. Synaptic activation. Experimental Brain Research, 1974, 21, 419–432.Google Scholar
  256. Kitai, S.T., Kocsis, J.D., and Kiyohara, T. Electrophysiological properties of nucleus reticularis tegmenti pontis cells: Antidromic and synaptic activation. Experimental Brain Research, 1976, 24, 294–309.Google Scholar
  257. Kitai, S.T., McCrea, R.A., Preston, R.J., and Bishop, G.A. Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. I. Climbing fiber system. Brain Research, 1977, 122, 197–214.CrossRefGoogle Scholar
  258. Korte, G.E., and Mugnaini, E. The cerebellar projection of the vestibular nerve in the cat. Journal of Comparative Neurology, 1979, 184, 265–278.CrossRefGoogle Scholar
  259. Kotchabhakdi, N., and Walberg, F. Primary vestibular afferent projections to the cerebellum as demonstrated by retrograde axonal transport of horseradish peroxidase. Brain Research, 1978a, 142, 142–146.CrossRefGoogle Scholar
  260. Kotchabhakdi, N., and Walberg, F. Cerebellar afferent projections from the vestibular nuclei in the cat: An experimental study with the method of retrograde axonal transport of horseradish peroxidase. Experimental Brain Research, 1978b, 31, 591–604.Google Scholar
  261. Kotchabhakdi, N., Hoddevik, G.H., and Walberg, F. Cerebellar afferent projections from the perihypoglossal nuclei: An experimental study with the method of retrograde axonal transport of horseradish peroxidase. Experimental Brain Research, 1978a, 31, 13–29.Google Scholar
  262. Kotchabhakdi, N., Walberg, F., and Brodai, A. The olivocerebellar projection in the cat studiedGoogle Scholar
  263. with the method of retrograde axonal transport of horseradish peroxidase. VII. The projection to lobules simplex, Crus I and II. Journal of Comparative Neurology, 1978b, 182, 293–314.Google Scholar
  264. Kron, G. Tensor Analysis of Networks. New York: Wiley, 1939.Google Scholar
  265. Kuhn, R.A. Organization of tactile dermatomes in cat and man. Journal oj Neurophysiology, 1953, 16, 169–182.Google Scholar
  266. Kuno, M., Munoz-Martinez, E.J., and Randic, M. Sensory inputs to neurones in Clarke’s column from muscle, cutaneous and joint receptors. Journal of Physiology, 1973, 228, 327–342.Google Scholar
  267. Künzle, H. The topographic organization of spinal afferents to the lateral reticular nucleus of the cat. Journal of Comparative Neurology, 1973, 149, 103–116.CrossRefGoogle Scholar
  268. Künzle, H. Autoradiographic tracing of the cerebellar projections from the lateral reticular nucleus in the cat. Experimental Brain Research, 1975, 22, 255–266.CrossRefGoogle Scholar
  269. Ladpli, R., and Brodai, A. Experimental studies of commissural and reticular formation projections from the vestibular nuclei in the cat. Brain Research, 1968, 8, 65–96.CrossRefGoogle Scholar
  270. Lamarre, Y., deMontigny, C., Dumont, M., and Weiss, M. Harmaline-induced rhythm activity of cerebellar and lower brain stem neurons. Brain Research, 1971, 32, 246–250.CrossRefGoogle Scholar
  271. Langelaan, J.W. On the development of the external form of the human cerebellum. Brain, 1919, 42, 130–170.CrossRefGoogle Scholar
  272. Larramendi, L.M.H., and Victor, T. Synapses on spines of the Purkinje cell of the mouse. An electron microscopic study. Brain Research, 1967, 5, 15–30.CrossRefGoogle Scholar
  273. Larsell, O. Morphogensis and evolution of the cerebellum. A.M.A. Archives of Neurology and Psychiatry, 1934, 31, 373–395.CrossRefGoogle Scholar
  274. Larsell, O. The development and morphology of the cerebellum in the opossum. Part II. Later development and adult. Journal of Comparative Neurology, 1936, 63, 251–291.CrossRefGoogle Scholar
  275. Larsell, O. The cerebellum: A review and interpretation. A.M.A. Archives of Neurology and Psychiatry, 1937, 38, 580–607.CrossRefGoogle Scholar
  276. Larsell, O. The development and subdivisions of the cerebellum of birds. Journal of Comparative Neurology, 1948, 89, 123–189.CrossRefGoogle Scholar
  277. Larsell, O. The morphogenesis and adult pattern of the lobules and fissures of the cerebellum of the white rat. Journal of Comparative Neurology, 1952, 97, 281–356.CrossRefGoogle Scholar
  278. Larsell, O. Cerebellum of cat and monkey. Journal of Comparative Neurology, 1953, 99, 135–200.CrossRefGoogle Scholar
  279. Larsell, O. The Comparative Anatomy and Histology of the Cerebellum from Myxinoids through Birds. J. Jansen (Ed.). Minneapolis: University of Minnesota Press, 1967.Google Scholar
  280. Larsell, O. The Comparative Anatomy of Histology of the Cerebellum from Monotremes through Primates, J. Jansen (Ed.). Minneapolis: University of Minnesota Press, 1970.Google Scholar
  281. Larsell, O., and Jansen, J. The Comparative Anatomy and Histology of the Cerebellum: The Human Cerebellum, Cerebellar Connections, and Cerebellar Cortex. Minneapolis: University of Minnesota Press, 1972.Google Scholar
  282. Leicht, R., and Schmidt, R. F. Somatotopic studies on the vermal cortex of the cerebellar anterior lobe of unanesthetized cat. Experimental Brain Research, 1977, 27, 479–490.Google Scholar
  283. Leicht, R., Rowe, M.J., and Schmidt, R. F. Cutaneous convergence onto the climbing fiber input to cerebellar Purkinje cells. Journal of Physiology (London), 1973a, 228, 601–618.Google Scholar
  284. Leicht, R., Rowe, M.J., and Schmidt, R.F. Cortical and peripheral modification of cerebellar climbing fibre activity arising from cutaneous mechanoreceptors. Journal of Physiology (London), 1973b, 228, 619–635.Google Scholar
  285. Leicht, R., Rowe, M.J., and Schmidt, R.F. Mossy and climbing fiber inputs from cutaneous mechanoreceptors to cerebellar Purkyne cells in unanesthetized cats. Experimental Brain Research, 1977, 27, 459–477.Google Scholar
  286. Linauts, M., and Martin, G.F. An autoradiographic study of midbrain-diencephalic projections to the inferior olivary nucleus in the opossum (Didelphis virginiana). Journal of Comparative Neurology, 1978, 179, 325–354.CrossRefGoogle Scholar
  287. Lindstrom, S., and Takata, M. Monosynaptic excitation of dorsal spinocerebellar tract neurones from low threshold joint afferents. Acta Physiologica Scandinavica, 1972, 84, 430–432.Google Scholar
  288. Llinás, R. Eighteenth Bowditch lecture: Motor aspects of cerebellar control. Physiologist, 1974, 17, 19–46.Google Scholar
  289. Llinás, R.R. The cortex of the cerebellum. Scientific American, 1975, 232, 56–71.CrossRefGoogle Scholar
  290. Llinás, R., and Hess, R. Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. Proceedings of the National Academy of Science, (U.S.A.), 1976, 73, 2520–2523.CrossRefGoogle Scholar
  291. Llinás, R., and Hillman, D.E. Physiological and morphological organization of the cerebellum circuits of various vertebrates. In R. Llinás (Ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association, 1969.Google Scholar
  292. Llinás, R., and Hillman, D.E. A multipurpose tridimensional reconstruction computer system for neuroanatomy. In M. Santini (Ed.), Golgi Centennial Symposium. New York: Raven Press, 1975.Google Scholar
  293. Llinás, R., and Nicholson, C. Electrophysiological properties of dendrites and somata in alligator Purkinje cells. Journal of Neurophysiology, 1971, 34, 534–551.Google Scholar
  294. Llinás, R., and Nicholson, C. Reversal properties of climbing fiber potential in cat Purkinje cells: An example of a distributed synapse. Journal of Neurophysiology, 1976, 39, 311–323.Google Scholar
  295. Llinás, R., and Sugimori, M. Dendritic calcium spiking in mammalian Purkinje cells: In vitro study of its function and development. Society for Neuroscience Abstracts, 1978, 4, 66.Google Scholar
  296. Llinás, R., and Sugimori, M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. Journal of Physiology (London), 1980a, 305, 171–195.Google Scholar
  297. Llinás, R., and Sugimori, M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. Journal of Physiology (London), 1980b, 305, 197–213.Google Scholar
  298. Llinás, R., and Volkind, R.A. The olivo-cerebellar system: Functional properties as revealed by harmaline-induced tremor. Experimental Brain Research, 1973, 18, 69–87.CrossRefGoogle Scholar
  299. Llinás, R., and Yarom, R. Electrophysiology of mammalian inferior olivary neurons in vitro. Different types of voltage-dependent ionic conductances. Journal of Physiology (London), 1981a, 315. Google Scholar
  300. Llinás, R., and Yarom, R. Properties and distribution of ionic conductances generating electrores-ponsiveness of mammalian inferior olivary neurones in vitro. Journal of Physiology (London), 1981b, 315. Google Scholar
  301. Lundberg, A. Integrative significance of patterns of connections made by muscle afferents in the spinal cord. Symposia and Special Lectures, XXI International Physiological Congress, pp. 100–105, 1959.Google Scholar
  302. Lundberg, A. Ascending spinal hindlimb pathways in the cat. Progress in Brain Research, 1964, 12, 135–163.CrossRefGoogle Scholar
  303. Lundberg, A. Function of the ventral spinocerebellar tract. A new hypothesis. Experimental Brain Research, 1971, 12, 317–330.Google Scholar
  304. Lundberg, A., and Oscarsson, O. Two ascending spinal pathways in the ventral part of the cord. Acta Physiologica Scandinavica, 1962, 54, 270–286.CrossRefGoogle Scholar
  305. Lundberg, A., and Weight, F. Functional organization of connexions to the ventral spinocerebellar tract. Experimental Brain Research, 1971, 12, 295–316.Google Scholar
  306. Mabuchi, M., and Kusama, T. Mesodiencephalic projections to the inferior olive and the vestibular and perihypoglossal nuclei. Brain Research, 1970, 17, 133–136.CrossRefGoogle Scholar
  307. Maciewicz, R.J., and Spencer, R.F. Oculomotor and abducens internuclear pathways in the cat. In R. Baker and A. Berthoz (Eds.), Control of Gaze by Brain Stem Neurons. New York: Elsevier/North Holland, 1977.Google Scholar
  308. Maciewicz, R.J., Eagen, K., Kaneko, C.R.S., and Highstein, S.M. Vestibular and medullary afferents to the abducens nucleus in the cat. Brain Research, 1977, 123, 229–240.CrossRefGoogle Scholar
  309. Maekawa, K., and Simpson, J.I. Climbing fiber responses evoked in vestibulocerebellum of rabbit from visual system. Journal of Neurophysiology, 1973, 36, 649–666.Google Scholar
  310. Maekawa, K., and Takeda, T. Afferent pathways from the visual system to the cerebellar flocculus of the rabbit. In R. Baker and A. Berthoz (Eds.), Control of Gaze by Brain Stem Neurons, Developments in Neuroscience (Vol. 1). New York: Elsevier/North Holland, 1977.Google Scholar
  311. Mann, M.D. Clarke’s column and the dorsal spinocerebellar tract. A review. Brain, Behavior and Evolution, 1973, 7, 34–83.CrossRefGoogle Scholar
  312. Marr, D. A theory of cerebellar cortex. Journal of Physiology, (London), 1969, 202, 437–470.Google Scholar
  313. Martin, G.F., Beattie, M.S., Hughes, H.C., Linauts, M., and Panneton, M. The organization of reticulo-olivocerebellar circuits in the North American opossum. Brain Research, 1977, 137, 253–266.CrossRefGoogle Scholar
  314. Martin, G.F., Dom, R., King, J.S., Robards, M., and Watson, C.R.R. The inferior olivary nucleus of the opossum (Didelphis marsupialis virginiana). Its organization and connections. Journal of Comparative Neurology, 1975, 160, 507–534.CrossRefGoogle Scholar
  315. Martin, G.F., Henkel, C.K., and King, J.S. Cerebello-olivary fibers: Their origin, course and distribution in the North American opossum. Experimental Brain Research, 1976, 24, 219–236.CrossRefGoogle Scholar
  316. Matsushita, M., and Hosoya, Y. The location of spinal projection neurons in the cerebellar nuclei (cerebellospinal tract neurons) of the cat. A study with the horseradish peroxidase technique. Brain Research, 1978, 142, 237–248.CrossRefGoogle Scholar
  317. Matsushita, M., and Ikeda, M. Olivary projections to the cerebellar nuclei in the cat. Experimental Brain Research, 1970, 10, 488–500.Google Scholar
  318. Matsushita, M., and Ikeda, M. The central cervical nucleus as cell origin of a spinocerebellar tract arising from the cervical cord: A study in the cat using horseradish peroxidase. Brain Research, 1975, 100, 412–417.CrossRefGoogle Scholar
  319. Matsushita, M., and Ikeda, M. Projection from the lateral reticular nucleus to the cerebellar cortex and nuclei in the cat. Experimental Brain Research, 1976, 24, 403–421.CrossRefGoogle Scholar
  320. McCrea, R.A., Bishop, C.A., and Kitai, S.T. Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. II. Mossy fiber system. Brain Research, 1977, 122, 215–228.CrossRefGoogle Scholar
  321. McCrea, R.A., Bishop, C.A., and Kitai, S.T. Morphological and electrophysiological characteristics of projecting neurons in the nucleus interpositus of the cat cerebellum. Journal of Comparative Neurology, 1978, 181, 397–420.CrossRefGoogle Scholar
  322. McCrea, R.A., Baker, R., and Delgado-Garcia, J. Afferent and efferent organization of the pre-positus hypoglossi nucleus. Progress in Brain Research, 1979, 50, 653–665.CrossRefGoogle Scholar
  323. Miles, F.A., and Fuller, J.H. Visual tracking and the primate flocculus. Science, 1975, 189, 1000–1002.CrossRefGoogle Scholar
  324. Miller, S., and Oscarsson, O. Termination and functional organization of spino-olivocerebellar paths. In W.S. Fields and W.D. Willis, Jr. (Eds.), The Cerebellum in Health and Disease. St. Louis: Green, 1970.Google Scholar
  325. Mizuno, N. An experimental study of the spino-olivary fibers in the rabbit and the cat. Journal of Comparative Neurology, 1966, 727, 267–292.CrossRefGoogle Scholar
  326. Mizuno, N., Mochizuki, K., Akimoto, C., and Matsushima, R. Pretectal projection to the inferior olive in the rabbit. Experimental Neurology, 1973, 39, 498–506.CrossRefGoogle Scholar
  327. Mizuno, N., Mochizuki, K., Akimoto, C., Matsushima, R., and Sasaki, K. Projections from the parietal cortex to the brain stem nuclei in the cat, with special reference to the parietal cerebro-cerebellar system. Journal of Comparative Neurology, 1973, 147, 511–522.CrossRefGoogle Scholar
  328. Moatamed, F. Cell frequencies in the human inferior olivary nuclear complex. Journal of Comparative Neurology, 1966, 128, 109–116.CrossRefGoogle Scholar
  329. Montigny, C., de, and Lamarre, Y. Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system of the cat. Brain Research, 1973, 53, 81–95.CrossRefGoogle Scholar
  330. Mower, C., Gibson, A., and Glickstein, M. Tectopontine pathway in the cat: Laminar distribution of cells of origin and visual properties of target cells in dorsolateral pontine nucleus. Journal of Neurophysiology, 1979, 42, 1–15.Google Scholar
  331. Mugnaini, E. Ultrastructural studies on the cerebellar histogenesis. II. Maturation of nerve cell populations and establishment of synaptic connections in the cerebellar cortex of the chick. In R. Llinás (Ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association, 1969.Google Scholar
  332. Mugnaini, E. The histology and cytology of the cerebellar cortex. In O. Larsell and J. Jansen (Eds.), The Comparative Anatomy and Histology of the Cerebellum: The Human Cerebellum, Cerebellar Connections and Cerebellar Cortex. Minneapolis: University of Minnesota Press, 1972.Google Scholar
  333. Murphy, J. T., MacKay, W.A., and Johnson, F. Differences between cerebellar mossy and climbing fibre responses to natural stimulation of forelimb muscle proprioceptors. Brain Research, 1973, 55, 263–290.CrossRefGoogle Scholar
  334. Oscarsson, O. Primary afferent collaterals and spinal relays of the dorsal and ventral spino-cerebellar tracts. Acta Physiologica Scandinavica, 1957, 40, 222–231.CrossRefGoogle Scholar
  335. Oscarsson, O. Functional organization of the spino- and cuneo-cerebellar tracts. Physiological Reviews, 1965, 45, 495–522.Google Scholar
  336. Oscarsson, O. Functional significance of information channels from the spinal cord to the cerebellum. In M.D. Yahr and D.P. Purpura (Eds.), Neurophysiological Basis of Normal and Abnormal Motor Activities. New York: Raven Press, 1967.Google Scholar
  337. Oscarsson, O. Termination and functional organization of the ventral spino-olivocerebellar path. Journal of Physiology (London), 1968, 796, 453–478.Google Scholar
  338. Oscarsson, O. The sagittal organization of the cerebellar anterior lobe as revealed by the projection patterns of the climbing fiber system. In R. Llinás (Ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association, 1969.Google Scholar
  339. Oscarsson, O. Functional organization of spinocerebellar paths. In A. Iggo (Ed.), Handbook of Sensory Physiology. Somatosensory System. (Vol. II). New York: Springer-Verlag, 1973.Google Scholar
  340. Oscarsson, O. Spatial distribution of climbing and mossy fibre inputs into the cerebellar cortex. Experimental Brain Research, 1976, 1, 36–42.Google Scholar
  341. Oscarsson, O., and Rosen, I. Response characteristics of reticulo-cerebellar neurones activated from spinal afferents. Experimental Brain Research, 1966, 1, 320–328.CrossRefGoogle Scholar
  342. Oscarsson, O., and Sjölund, B. The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Experimental Brain Research, 1977a, 28, 469–486.Google Scholar
  343. Oscarsson, O., and Sjölund, B. The ventral spino-olivocerebellar system in the cat. II. Termination zones in the cerebellar posterior lobe. Experimental Brain Research, 1977b, 28, 487–503.Google Scholar
  344. Oscarsson, O., and Sjölund, B. The ventral spino-olivocerebellar system in the cat. III. Functional characteristics of the five paths. Experimental Brain Research, 1977c, 28, 505–520.Google Scholar
  345. Oscarsson, O., and Uddenberg, N. Identification of a spino-cerebellar tract activated from forelimb afferents in the cat. Acta Physiologica Scandinavica, 1964, 62, 125–136.CrossRefGoogle Scholar
  346. Oscarsson, O., and Uddenberg, N. Properties of afferent connections to the rostral spino-cerebellar tract in the cat. Acta Physiologica Scandinavica, 1965, 64, 143–153.CrossRefGoogle Scholar
  347. Palay, S.L., and Chan-Palay, V. Cerebellar Cortex. Cytology and Organization. Berlin: Springer-Verlag, 1974.CrossRefGoogle Scholar
  348. Palkovits, M., Magyar, P., and Szentágothai, J. Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. Brain Research, 1971a, 32, 15–30.CrossRefGoogle Scholar
  349. Palkovits, M., Magyar, P., and Szentágothai, J. Quantitative histological analysis of the cerebellar cortex in the cat. III. Structural organization of the molecular layer. Brain Research, 1971b, 34, 1–18.CrossRefGoogle Scholar
  350. Palkovits, M., Magyar, P., and Szentágothai, J. Quantitative histological analysis of the cerebellar cortex in the cat. IV. Mossy fiber-Purkinje cell numerical transfer. Brain Research, 1972, 45, 15–29.CrossRefGoogle Scholar
  351. Pellionisz, A., and Llinás, R. Brain modeling by tensor network theory and computer simulation. The cerebellum: Parallel processor for predictive coordination. Neuroscience, 1979, 4, 323–348.CrossRefGoogle Scholar
  352. Pellionisz, A., and Llinás, R. Tensorial approach to the geometry of brain function: Cerebellar coordination via metric tensor. Neuroscience, 1980, 5, 1125–1136.CrossRefGoogle Scholar
  353. Pompeiano, O. Functional organization of the cerebellar projections to the spinal cord. Progress in Brain Research, 1967, 25, 282–321.CrossRefGoogle Scholar
  354. Pompeiano, O. Macular input to neurons of the spino-reticulocerebellar pathway. Brain Research, 1975, 95, 351–368.CrossRefGoogle Scholar
  355. Precht, W., and Llinás, R. Direct vestibular afferents to cat cerebellar nuclei. Proceedings of the International Union of Physiological Sciences, 1968, 8, 1063.Google Scholar
  356. Precht, W., Volkind, R., and Blanks, R.H.I. Functional organization of the vestibular input to the anterior and posterior cerebellar vermis of cat. Experimental Brain Research, 1977, 27, 143–160.CrossRefGoogle Scholar
  357. Provini, L., Redman, S., and Strata, P. Mossy and climbing fiber organization on the anterior lobe of the cerebellum activated by forelimb and hindlimb areas of the sensorimotor cortex. Experimental Brain Research, 1968, 6, 216–233.CrossRefGoogle Scholar
  358. Pubols, B.H., Jr., Welker, W.I., and Johnson, J.I. Somatic sensory representation of forelimb in dorsal root fibers of racoon, coatimundi and cat. Journal of Neurophysiology, 1965, 28, 312–341.Google Scholar
  359. Ramón y Cajal, S. Estructura de los centros nerviosos de las aves. Revista Trimestral de Histologia Normal y Patológica, 1888, 1, 305–315.Google Scholar
  360. Ramón y Cajal, S. La Textura del Sistema Nervioso del Hombre y los Vertebrados. Madrid: Moya, 1904.Google Scholar
  361. Riley, H.A. The arbor vitae and the folial pattern of the mammalian cerebellum. In F. Tilney, T.K. Davis, and H.A. Riley (Eds.), Research Publication of the Association for Research in Nervous and Mental Disease. Vol. VI: The Cerebellum. Baltimore: Williams & Wilkins, 1929.Google Scholar
  362. Rinvik, E., and Walberg, F. Studies on the cerebellar projections from the main and external cuneate nuclei in the cat by means of retrograde axonal transport of horseradish peroxidase. Brain Research, 1975, 95, 371–381.CrossRefGoogle Scholar
  363. Rispal-Padel, L., and Grangetto, A. The cerebello-thalamo-cortical pathway. Topographical investigation at the unitary level in the cat. Experimental Brain Research, 1977, 28, 101–123.CrossRefGoogle Scholar
  364. Rispal-Padel, L., and Lartreille, J. The organization of projections from the cerebellar nuclei to the contralateral motor cortex in the cat. Experimental Brain Research, 1974, 19, 36–60.CrossRefGoogle Scholar
  365. Robertson, L.T., and Grimm, R.J. Responses of primate dentate neurons to different trajectories of the limb. Experimental Brain Research, 1975, 23, 447–462.CrossRefGoogle Scholar
  366. Robinson, D.A. Adaptive gain control of vestibulo-ocular reflex by the cerebellum. Journal of Neurophysiology, 1976, 39, 954–969.Google Scholar
  367. Rosen, I., and Scheid, P. Patterns of afferent input to the lateral reticular nucleus of cat. Experimental Brain Research, 1973a, 18, 242–255.Google Scholar
  368. Rosen, I., and Scheid, P. Responses to nerve stimulation in the bilateral ventral flexor reflex tract (bVFRT) of the cat. Experimental Brain Research, 1973b, 18, 256–267.Google Scholar
  369. Rosen, I., and Scheid, P. Responses in the spino-reticulocerebellar pathway to stimulation of cutaneous mechanoreceptors. Experimental Brain Research, 1973c, 18, 268–278.Google Scholar
  370. Rosen, I., and Sjölund, B. Organization of group I activated cells in the main and external cuneate nuclei of the cat: Identification of muscle receptors. Experimental Brain Research, 1973a, 16, 221–237.Google Scholar
  371. Rosen, I., and Sjölund, B. Organization of group I activated cells in the main and external cuneate nuclei of the cat: Convergence patterns demonstrated by natural stimulation. Experimental Brain Research, 1973b, 16, 238–246.Google Scholar
  372. Rossum, J., van. Corticonuclear and Corticovestibular Projections of the Cerebellum. Ph.D. thesis. Van Gorcum, Leiden, 1969.Google Scholar
  373. Rubia, F.J., and Kolb, F.P. Responses of cerebellar units to a passive movement in the decerebrate cat. Experimental Brain Research, 1978, 31, 387–401.CrossRefGoogle Scholar
  374. Ruegg, D.G., and Wiesendanger, M. Corticofugal effects from sensorimotor area I and somatosensory area II on neurons of the pontine nuclei in the cat. Journal of Physiology, (London), 1975, 247, 745–758.Google Scholar
  375. Ruggiero, D., Batton, R.B., Jayaraman, A., and Carpenter, M.B. Brain stem afferents to the fastigial nucleus in the cat demonstrated by transport of horseradish peroxidase. Journal of Comparative Neurology, 1977, 772, 189–210.CrossRefGoogle Scholar
  376. Rushmer, D.S., Roberts, W.J., and Augter, G.K. Climbing fiber responses of cerebellar Purkinje cells to passive movement of the cat forepaw. Brain Research, 1976, 106, 1–20.CrossRefGoogle Scholar
  377. Saint-Cyr, J., and Courville, J. Projection from the vestibular nuclei to the inferior olive in the cat: An autoradiographic and horseradish peroxidase study. Brain Research, 1979, 165, 189–200.CrossRefGoogle Scholar
  378. Sasaki, K., Kawaguchi, S., Matsuda, Y., and Mizuno, N. Electrophysiological studies on cerebello-cerebral projections in the cat. Experimental Brain Research, 1972, 16, 75–88.Google Scholar
  379. Sasaki, K., Matsuda, Y., Kawaguchi, S., and Mizuno, N. On the cerebello-thalamo-cerebral pathway for the parietal cortex. Experimental Brain Research, 1972, 16, 89–103.Google Scholar
  380. Sasaki, K., Kawaguchi, S., Oka, H., Sakai, M., and Mizuno, N. Electrophysiological studies on the cerebello-cerebral projections in monkeys. Experimental Brain Research, 1976, 24, 495–507.CrossRefGoogle Scholar
  381. Sasaki, K., Oka, H., Matsuda, Y., Shimono, T., and Mizuno, N. Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex. Experimental Brain Research, 1975, 23, 91–102.CrossRefGoogle Scholar
  382. Sasaki, K., Oka, H., Kawaguchi, S., Jinnai, K., and Yasuda, T. Mossy fibre responses produced in cerebellar cortex by stimulation of the cerebral cortex in monkeys. Experimental Brain Research, 1977, 29, 419–428.CrossRefGoogle Scholar
  383. Scheibel, M.E., and Scheibel, A.B. Observations on the intracortical relations of the climbing fibers of the cerebellum. Journal of Comparative Neurology, 1954, 101, 733–763.CrossRefGoogle Scholar
  384. Sedgwick, E.M., and Williams, T.D. Responses of single units in the inferior olive to stimulation of the limb nerves, peripheral skin receptors, cerebellum, caudate nucleus and motor cortex. Journal of Physiology (London), 1967, 189, 261–279. Google Scholar
  385. Shinnar, S., Maciewicz, R.J., and Shofer, R.J. A raphe projection to the cat cerebellar cortex. Brain Research, 1975, 97, 139–143.CrossRefGoogle Scholar
  386. Shinoda, Y., and Yoshida, K. Neural pathways from the vestibular labyrinths to the flocculus in the cat. Experimental Brain Research, 1975, 22, 97–111.CrossRefGoogle Scholar
  387. Simpson, J.I. Erroneous zones of the cerebellar flocculus. Society for Neuroscience Abstracts, 1979, 5, 107.Google Scholar
  388. Simpson, J.I., and Alley, K.E. Visual climbing fiber input to rabbit vestibulocerebellum: A source of direction-specific information. Brain Research, 1974, 82, 302–308.CrossRefGoogle Scholar
  389. Simpson, J.I., and Hess, R. Complex and simple visual messages in the flocculus. In R. Baker and A. Berthoz (Eds.), Control of Gaze by Brain Stem Neurons. Amsterdam: Elsevier/North Holland, 1977.Google Scholar
  390. Simpson, J.I., Soodak, R.E., and Hess, R. The accessory optic system and its relation to the vestibulo-cerebellum. Progress in Brain Research, 1979, 50, 715–724.CrossRefGoogle Scholar
  391. Sjölund, B. The ventral spino-olivocerebellar system in the cat. V. Supraspinal control of spinal transmission. Experimental Brain Research, 1978, 33, 509–522.CrossRefGoogle Scholar
  392. Snider, R.S. Interrelations of cerebellum and brain stem. In P. Bard (Ed.), Research Publications of the Association for Research in Nervous and Mental Disease. Vol. XXX: Patterns of Organization in the Nervous System. Baltimore: Williams & Wilkins, 1952.Google Scholar
  393. Snider, R.S., and Eldred, E. Cerebro-cerebellar relationships in the monkey. Journal of Neurophysiology, 1952, 15, 27–40.Google Scholar
  394. Snider, R.S., and Stowell, A. Receiving areas of the tactile, auditory, and visual systems in the cerebellum. Journal of Neurophysiology, 1944, 7, 331–358.Google Scholar
  395. Snyder, R.L., Faull, R.L.M., and Mehler, W.R. A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, cat, and squirrel monkey based on the retrograde transport of horseradish peroxidase. Journal of Comparative Neurology, 1978, 181, 833–852.CrossRefGoogle Scholar
  396. Somana, R., and Walberg, F. Cerebellar afferents from the paramedian reticular nucleus studied with retrograde transport of horseradish peroxidase. Anatomy and Embryology, 1978, 154, 353–368.CrossRefGoogle Scholar
  397. Sotelo, C. Ultrastructural aspects of the cerebellar cortex of the frog. In R. Llinás (Ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association, 1969.Google Scholar
  398. Sotelo, C., Llinás, R., and Baker, R. Structural study of the inferior olivary nucleus of the cat. Morphological correlates of electrotonic coupling. Journal of Neurophysiology, 1974, 37, 541–559.Google Scholar
  399. Sousa-Pinto, A. Experimental anatomical demonstration of a cortico-olivary projection from area 6 (supplementary motor area?) in the cat. Brain Research 1969, 16, 73–83.CrossRefGoogle Scholar
  400. Sousa-Pinto, A. The cortical projection onto the paramedian reticular and perihypoglossal nuclei (nucleus praepositus hypoglossi, nucleus intercalatus and nucleus of Roller) of the medulla oblongata of the cat. An experimental-anatomical study. Brain Research, 1970, 18, 77–91.CrossRefGoogle Scholar
  401. Sousa-Pinto, A., and Brodai, A. Demonstration of a somatotopical pattern in the cortico-olivary projection in the cat. An experimental-anatomical study. Experimental Brain Research, 1969, 8, 364–386.CrossRefGoogle Scholar
  402. Spencer, W.A. The physiology of supraspinal neurons in mammals. In E.R. Kandel (Ed.), The Nervous System, Vol. I, Part 2, Handbook of Physiology. Washington, D.G.: American Physiological Society, 1977.Google Scholar
  403. Spira, M.E., and Bennett, M.V.L. Synaptic control of electrotonic coupling between neurons. Brain Research, 1972, 37, 294–300.CrossRefGoogle Scholar
  404. Stewart, W.A., and King, R.B. Fiber projections from the nucleus caudalis of the spinal trigeminal nucleus. Journal of Comparative Neurology, 1963, 121, 271–286.CrossRefGoogle Scholar
  405. Swanson, L.W., Cowan, W.M., and Jones, E.G. An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. Journal of Comparative Neurology, 1974, 156, 143–164.CrossRefGoogle Scholar
  406. Szentágothai, J., and Rajkovits, K. Uberden Ursprung der Kletterfasern des Kleinhirns. Zeitschrift für Anatomie und Entwicklungsgeschichte, 1959, 121, 130–141.CrossRefGoogle Scholar
  407. Takeda, T., and Maekawa, K. The origin of the pretecto-olivary tract. A study using the horseradish peroxidase method. Brain Research, 1976, 117, 319–325.CrossRefGoogle Scholar
  408. Thach, W.T. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. Journal of Neurophysiology, 1968, 31, 785–797.Google Scholar
  409. Thach, W.T. Discharge of cerebellar neurons related to two maintained postures and two prompt movements. I. Nuclear cell output. Journal of Neurophysiology, 1970, 33, 527–536.Google Scholar
  410. Thomas, D., Kaufman, R., Sprague, J.M., and Chambers, W.W. Experimental studies of the vermal cerebellar projections in the brain stem of the cat (fastigiobulbar tract). Journal of Anatomy, 1956, 90, 371–385.Google Scholar
  411. Tolbert, D.L., Bantli, H., and Bioedel, J.R. Anatomical and physiological evidence for a cerebellar nucleocortical projection in the cat. Neuroscience, 1976, 1, 205–217.CrossRefGoogle Scholar
  412. Tolbert, D.L., Massopust, L.C., Jr., Murphy, M.G., and Young, P.A. The anatomical organization of the cerebello-olivary pathway in the cat. Journal of Comparative Neurology, 1976, 170, 525–544.CrossRefGoogle Scholar
  413. Tolbert, D.L., Bantli, H., and Bloedel, J.R. The intracerebellar nucleocortical projection in a primate. Experimental Brain Research, 1977, 30, 425–434.CrossRefGoogle Scholar
  414. Tolbert, D.L., Bantli, H., and Bloedel, J.R. Organizational features of the cat and monkey cerebellar nucleocortical projection. Journal of Comparative Neurology, 1978a, 182, 39–56.CrossRefGoogle Scholar
  415. Tolbert, D.L., Bantli, H., and Bloedel, J.R. Multiple branching of cerebellar efferent projections in cats. Experimental Brain Research 1978b, 31, 305–316.CrossRefGoogle Scholar
  416. Torvik, A., and Brodai, A. The cerebellar projection of the perihypoglossal nuclei (nucleus inter-calatus, nucleus praepositus and nucleus of Roller) in the cat. Journal of Neuropathology and Experimental Neurology, 1954, 13, 515–527.CrossRefGoogle Scholar
  417. Uno, M., Yoshida, M., and Hirota, I. The mode of cerebello-thalamic relay transmission investigated with intracellular recording from cells of the ventrolateral nucleus of cat’s thalamus. Experimental Brain Research, 1970, 10, 121–139.CrossRefGoogle Scholar
  418. Voogd, J. The Cerebellum of the Cat. Structure and Fibre Connections. Ph.D. thesis. Van Gorcum, Leiden, 1964.Google Scholar
  419. Voogd, J. Comparative aspects of the structure and fibre connexions of the mammalian cerebellum. Progress in Brain Research, 1967, 25, 94–134.CrossRefGoogle Scholar
  420. Voogd, J. The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In R. Llinás (Ed.), Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association, 1969.Google Scholar
  421. Walberg, F. Descending connections to the inferior olive: An experimental study in the cat. Journal of Comparative Neurology, 1956, 104, 77–173.CrossRefGoogle Scholar
  422. Walberg, F. Descending connections to the lateral reticular nucleus. An experimental study in the cat. Journal of Comparative Neurology, 1958, 109, 363–389.CrossRefGoogle Scholar
  423. Walberg, F. Fastigiofugal fibers to the perihypoglossal nuclei in the cat. Experimental Neurology, 1961, 3, 525–541.CrossRefGoogle Scholar
  424. Walberg, F. Descending connections from the mesencephalon to the inferior olive: An experimental study in the cat. Experimental Brain Research, 1974, 20, 145.CrossRefGoogle Scholar
  425. Walberg, F., and Jansen, J. Cerebellar corticovestibular fibers in the cat. Experimental Neurology, 1961, 3, 32–52.CrossRefGoogle Scholar
  426. Walberg, F., and Jansen, J. Cerebellar corticonuclear projection studied experimentally with silver impregnation methods. Journal für Hirnforschung, 1964, 6, 338–354.Google Scholar
  427. Walberg, F., and Pompeiano, O. Fastigiofugal fibers to the lateral reticular nucleus: An experimental study in the cat. Experimental Neurology, 1960, 2, 40–53.CrossRefGoogle Scholar
  428. Walberg, F., Pompeiano, O., Brodai, A., and Jansen, J. The fastigiovestibular projection in the cat. An experimental study with silver impregnation methods. Journal of Comparative Neurology, 1962, 118, 49–75. CrossRefGoogle Scholar
  429. Walberg, F., Pompeiano, O., Westrum, L.E., and Hauglie-Hanssen, E. Fastigioreticular fibers in cat. An experimental study with silver methods. Journal of Comparative Neurology, 1962, 119, 187–199.CrossRefGoogle Scholar
  430. Weber, J.T., Partlow, G.D., and Harting, J.K. The projection of the superior colliculus upon the inferior olivary complex: An autoradiographic and horseradish peroxidase study. Brain Research, 1978, 144, 369–377.CrossRefGoogle Scholar
  431. Wiksten, B. The central cervical nucleus—A source of spinocerebellar fibres, demonstrated by retrograde transport of horseradish peroxidase. Neuroscience Letters, 1975, 1, 81–84.CrossRefGoogle Scholar
  432. Wilson, V.J., Maeda, M., and Franck, J.I. Inputs from neck afferents to the cat flocculus. Brain Research, 1975, 89, 133–138.CrossRefGoogle Scholar
  433. Wilson, V.J., Maeda, M., Franck, J.I., and Shimazu, H. Mossy fiber neck and second-order labyrinthine projections to cat flocculus. Journal of Neurophysiology, 1976, 39, 301–310.Google Scholar
  434. Wilson, V.J., Uchino, Y., Maunz, R.A., Susswein, A., and Fukushima, K. Properties and connections of cat fastigiospinal neurons. Experimental Brain Research, 1978, 32, 1–17.CrossRefGoogle Scholar
  435. Yamamoto, M. Localization of rabbit’s flocculus Purkinje cells projecting to the cerebellar lateral nucleus and the nucleus prepositus hypoglossi investigated by means of the horseradish peroxidase retrograde axonal transport. Neuroscience Letters, 1978, 7, 197–202.CrossRefGoogle Scholar
  436. Yamamoto, M. Topographical representation in rabbit cerebellar flocculus for various afferent inputs from the brain stem investigated by means of retrograde axonal transport of horseradish peroxidase. Neuroscience Letters, 1979a, 12, 29–34.CrossRefGoogle Scholar
  437. Yamamoto, M. Vestibulo-ocular reflex pathways of rabbits and their representation in the cerebellar flocculus. Progress in Brain Research, 1979b, 50, 451–457.CrossRefGoogle Scholar
  438. Yamamoto, M., and Shimoyama, I. Differential localization of rabbit’s flocculus Purkinje cells projecting to the medial and superior vestibular nuclei, investigated by means of the horseradish peroxidase retrograde axonal transport. Neuroscience Letters, 1977, 5, 279–283.CrossRefGoogle Scholar
  439. Yarom, Y., and Llinás, R. Electrophysiological properties of mammalian inferior olive neurons in in vitro brain stem slices and in vitro whole brain stem. Society for Neuroscience Abstracts, 1979, 5, 109.Google Scholar
  440. Zangger, P., and Wiesendanger, M. Excitation of lateral reticular nucleus neurones by collaterals of the pyramidal tract. Experimental Brain Research, 1973, 17, 144–151.CrossRefGoogle Scholar

Additional Recommended Reading

  1. Armstrong, D.M. The mammalian cerebellum and its contribution to movement control. In R. Porter (Ed.), International Review of Physiology, Neurophysiology III (Vol. 17). Baltimore: University Park Press, 1978.Google Scholar
  2. Chan-Palay, V. Cerebellar dentate nucleus. Organization, Cytology and Transmitters. New York: Springer-Verlag, 1977.Google Scholar
  3. Dow, R.S. Cerebellar syndromes. In P.J. Vinken and G.W. Bruyn (Eds.), Handbook of Clinical Neurology (Vol. 2). New York: John Wiley Interscience, 1969.Google Scholar
  4. Eccles, J.C., Ito, M., and Szentágothai, J. The Cerebellum as a Neuronal Machine. New York: Springer-Verlag, 1967.Google Scholar
  5. Fadiga, E., and Pupilli, G.C. Teleceptive components of the cerebellar function. Physiological Reviews, 1964, 44, 432–486.Google Scholar
  6. Holmes, G. The cerebellum of man. Brain, 1939, 62, 1–30.CrossRefGoogle Scholar
  7. Llinás, R. (Ed.). Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association, 1969.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Rodolfo R. Llinás
    • 1
  • John I. Simpson
    • 1
  1. 1.Department of Physiology and BiophysicsNew York University Medical CenterNew YorkUSA

Personalised recommendations