Advertisement

Control of Motoneuron Output by Pathways Descending from the Brain Stem

  • Peter C. Schwindt

Abstract

This chapter will be concerned with the control of spinal motoneuron output by neuronal activity originating from the red nucleus, the vestibular nuclear complex, and the medial pontomedullary reticular formation. These brain stem nuclei give rise, respectively, to the rubrospinal tract and the various vestibulospinal and reticulospinal tracts which, together with the corticospinal tract, constitute the major descending fiber systems controlling motor output in mammals. Each of these tracts contains some fibers running the length of the spinal cord, and each influences motoneurons from cervical to lumbosacral levels. These brain stem nuclei together with their descending fibers will be referred to in this chapter as the brain stem efferent systems.

Keywords

Vestibular Nucleus Experimental Brain Research Medial Longitudinal Fasciculus Reticulospinal Neuron Rubrospinal Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abzug, C., Maeda, M., Peterson, B. W., and Wilson, V. J. Cervical branching of lumbar vestibulospinal axons. Journal of Physiology (London), 1974, 243, 499–522.Google Scholar
  2. Adrian, E. D. Discharges from vestibular receptors in the cat. Journal of Physiology (London), 1943, 101, 389–407.Google Scholar
  3. Akaike, T. Comparison of neuronal composition of the vestibulospinal system between cat and rabbit. Experimental Brain Research, 1973, 18, 429–432.Google Scholar
  4. Akaike, T., and Westerman, R. A. Spinal segmental levels innervated by different types of vesti-bulo-spinal tract neurones in rabbit. Experimental Brain Research, 1973, 17, 443–446.Google Scholar
  5. Akaike, T., Fanardjian, V. V., Ito, M., Kumada, M., and Nakajima, H. Electrophysiological analysis of the vestibulospinal reflex pathway of rabbit. I. Classification of tract cells. Experimental Brain Research, 1973, 17, 477–496.Google Scholar
  6. Akaike, T., Fanardjian, V. V., Ito, M., and Ohno, T. Electrophysiological analysis of the vestibulospinal reflex pathway of rabbit. II. Synaptic actions upon spinal neurones. Experimental Brain Research, 1973, 17, 497–515.Google Scholar
  7. Alnaes, E., Jansen, J. K. S., and Rudjord, T. Fusimotor activity in the spinal cat. Acta Physiologica Scandinavica, 1965, 63, 197–212.CrossRefGoogle Scholar
  8. Andén, N.-E., Jukes, M. G. M., and Lundberg, A. The effect of DOPA on the spinal cord. 2. A pharmacological analysis. Acta Physiologica Scandinavica, 1966, 67, 387–397.CrossRefGoogle Scholar
  9. Andén, N.-E., Jukes, M. G. M., Lundberg, A., and Vyklicky, L. The effect of DOPA on the spinal cord. 1. Influence on transmission from primary afferents. Acta Physiologica Scandinavica, 1966, 67, 373–386.CrossRefGoogle Scholar
  10. Anderson, J. H., Berthoz, A., Soechting, J. F., and Terzuolo, C. A. Motor output to deafferented forelimb extensors in the decerebrate cat during natural vestibular stimulation. Brain Research, 1977, 122, 150–173.CrossRefGoogle Scholar
  11. Anderson, J. H., Soechting, J. F., and Terzuolo, C. A. Dynamic relations between natural vestibular inputs and activity of forelimb extensor muscles in the decerebrate cat. I. Motor output during sinusoidal linear accelerations. Brain Research, 1977a, 120, 1–15.CrossRefGoogle Scholar
  12. Anderson, J. H., Soechting, J. F., and Terzuolo, C. A. Dynamic relations between natural vestibular inputs and activity of forelimb extensor muscles in the decerebrate cat. II. Motor output during rotations in the horizontal plane. Brain Research, 1977b, 120, 17–33.CrossRefGoogle Scholar
  13. Anderson, M. E. Segmental reflex inputs to motoneurons innervating dorsal neck musculature in the cat. Experimental Brain Research, 1977, 28, 175–187.CrossRefGoogle Scholar
  14. Anderson, M. E., Yoshida, M., and Wilson, V. J. Influence of the superior colliculus on cat neck motoneurons. Journal of Neurophysiology, 1971, 34, 898–907.Google Scholar
  15. Andersson, S., and Gernandt, B. E. Ventral root discharge to vestibular and proprioceptive stimulation. Journal of Neurophysiology, 1956, 19, 524–543.Google Scholar
  16. Aoyama, M., Hongo, T., Kudo, N., and Tanaka, R. Convergent effects from bilateral vestibulospinal tracts on spinal interneurons. Brain Research, 1971, 35, 250–253.CrossRefGoogle Scholar
  17. Appelberg, B. The effect of electrical stimulation in nucleus ruber on the response to stretch in primary and secondary muscle spindle afferents. Acta Physiologica Scandinavica, 1962, 56, 140–151.CrossRefGoogle Scholar
  18. Appelberg, B. A rubro-olivary pathway. II. Simultaneous action on dynamic fusimotor neurones and the activity of the posterior lobe of the cerebellar cortex. Experimental Brain Research, 1967, 3, 382–390.Google Scholar
  19. Appelberg, B., and Jeneskog, T. A dorso-lateral spinal pathway mediating information from the mesencephalon to dynamic fusimotor neurones. Acta Physiologica Scandinavica, 1969, 77, 159–171.CrossRefGoogle Scholar
  20. Appelberg, B., and Jeneskog, T. Mesencephalic fusimotor control. Experimental Brain Research, 1972, 75, 97–112.Google Scholar
  21. Appelberg, B., and Kosary, I. Z. Excitation of flexor fusimotor neurones by electrical stimulation in the red nucleus. Acta Physiologica Scandinavica, 1963, 59, 445–453.CrossRefGoogle Scholar
  22. Appelberg, B., and Molander, C. A rubro-olivary pathway. I. Identification of a descending system for control of the dynamic sensitivity of muscle spindles. Experimental Brain Research, 1967, 3, 372–381.Google Scholar
  23. Appelberg, B., Jeneskog, T., and Johansson, H. Rubrospinal control of static and dynamic fusi-motor neurones. Acta Physiologica Scandinavica, 1975, 95, 431–440.CrossRefGoogle Scholar
  24. Ashcroft, D. W., and Hallpike, C. A. On the function of the saccule. Journal of Laryngology, 1934, 49,450–460.CrossRefGoogle Scholar
  25. Bach, L. M. N. Effect of bulbar facilitation and inhibition on peripheral reflex inhibition. Journal of Neurophysiology, 1950, 13, 260–264.Google Scholar
  26. Baidissera, F., and Roberts, W. J. Effects from the vestibulospinal tract on transmission from primary afferents to ventral spino-cerebellar tract neurones. Acta Physiologica Scandinavica, 1976, 96, 217–232.CrossRefGoogle Scholar
  27. Baidissera, F., and ten Bruggencate, G. Rubrospinal effects on ventral spino-cerebellar tract neurones. Acta Physiologica Scandinavica, 1976, 96, 233–249.CrossRefGoogle Scholar
  28. Baidissera, F., Lundberg, A., and Udo, M. Activity evoked from the mesencephalic tegmentum in descending pathways other than the rubrospinal tract. Experimental Brain Research, 1972a, 15, 133–150.Google Scholar
  29. Baidissera, F., Lundberg, A., and Udo, M. Stimulation of pre- and postsynaptic elements in the red nucleus. Experimental Brain Research, 1972b, 15, 151–167.Google Scholar
  30. Baidissera, F., ten Bruggencate, G., and Lundberg, A. Rubrospinal monosynaptic connection with last order interneurones of polysynaptic reflex paths. Brain Research, 1971, 27, 390–392.CrossRefGoogle Scholar
  31. Bantli, H., and Bloedel, J. R. Monosynaptic activation of a direct reticulospinal pathway by the dentate nucleus. Pflügers Archiv. 1975a, 357, 237–242.CrossRefGoogle Scholar
  32. Bantli, H., and Bloedel, J. R. The action of the dentate nucleus on the excitability of spinal motoneurons via pathways which do not involve the primary sensorimotor cortex. Brain Research, 1975b, 88, 86–90.CrossRefGoogle Scholar
  33. Barnes, G. D., and Pompeiano, O. The contribution of the medial and lateral vestibular nuclei to presynaptic and postsynaptic effects produced in the lumbar cord by vestibular volley. Pflügers Archiv, 1970, 317, 1–9.CrossRefGoogle Scholar
  34. Bayev, K. V., and Kostyuk, P. G. Convergence of cortico- and rubrospinal influences on interneurones of cat cervical spinal cord. Brain Research, 1973, 52, 159–171.CrossRefGoogle Scholar
  35. Beck, C. H., and Chambers, W. W. Speed, accuracy and strength of forelimb movement after unilateral pyramidotomy in rhesus monkeys. Journal of Comparative Physiology and Psychology, 1970, 70 (monograph 2, Pt. 2), 1–22.CrossRefGoogle Scholar
  36. Bergmans, J., and Grillner, S. Changes in dynamic sensitivity of primary endings of muscle spindle afferents induced by DOPA. Acta Physiologica Scandinavica, 1968a, 74, 629–636.CrossRefGoogle Scholar
  37. Bergmans, J., and Grillner, S. Monosynaptic control of static 7-motoneurones from the lower brainstem. Experientia, 1968b, 24, 146–147.CrossRefGoogle Scholar
  38. Berthoz, A., and Anderson, J. H. Frequency analysis of vestibular influence on extensor motoneurons. I. Response to tilt in forelimb extensors. Brain Research, 1971a, 34, 370–375.CrossRefGoogle Scholar
  39. Berthoz, A., and Anderson, J. H. Frequency analysis of vestibular influence on extensor motoneurons. II. Relationship between neck and forelimb extensors. Brain Research, 1971b, 34, 376–380.CrossRefGoogle Scholar
  40. Brodai, A. The Reticular Formation of the Brain Stem. Anatomical Aspects and Functional Correlations. Edinburgh: Oliver and Boyd, 1957.Google Scholar
  41. Brodai, A. Neurological Anatomy in Relation to Clinical Medicine. London: Oxford University Press, 1969.Google Scholar
  42. Brodai, A. Some features of the anatomical organization of the vestibular nuclear complex in the cat. Progress in Brain Research, 1972a, 37, 31–53.CrossRefGoogle Scholar
  43. Brodai, A. Anatomy of the vestibuloreticular connections and possible “ascending” vestibular pathways from the reticular formation. Progress in Brain Research, 1972b, 37, 553–566.CrossRefGoogle Scholar
  44. Brodai, A., Pompeiano, O., and Walberg, F. The Vestibular Nuclei and Their Connections. Anatomy and Functional Correlations. The Henderson Trust Lectures. Edinburgh: Oliver and Boyd, 1962.Google Scholar
  45. Bruggencate, G. ten, and Lundberg, A. Facilitatory interaction in transmission to motoneurons from vestibulospinal fibers and contralateral primary afferents. Experimental Brain Research, 1974, 19, 248–270.CrossRefGoogle Scholar
  46. Bruggencate, G. ten, Burke, R., Lundberg, A., and Udo, M. Interaction between the vestibulospinal tract, contralateral flexor reflex afferents and Ia afferents. Brain Research, 1969, 14, 529–532.CrossRefGoogle Scholar
  47. Burke, R. E. Motor unit types of cat triceps surae muscle. Journal of Physiology (London), 1967, 193, 141–160.Google Scholar
  48. Burke, R. E. Firing patterns of gastrocnemius motor units in the decerebrate cat. Journal of Physiology (London), 1968, 196, 631–654.Google Scholar
  49. Burke, R. E., Jankowska, E., and ten Bruggencate, G. A comparison of peripheral and rubrospinal synaptic input to slow and fast twitch motor units of triceps surae. Journal of Physiology (London), 1970, 207, 709–732.Google Scholar
  50. Carli, G., Diete-Spiff, K., and Pompeiano, O. Responses of the muscle spindles and of the extravasal fibers in an extensor muscle to stimulation of the lateral vestibular nucleus in the cat. Archivio Italiano di Biologia, 1967, 105, 209–242.Google Scholar
  51. Carpenter, D., Engberg, I., and Lundberg, A. Primary afferent depolarization evoked from the brain stem and the cerebellum. Archivio Italiano di Biologia, 1966, 104, 73–85.Google Scholar
  52. Clough, J. T. M., Kerneil, D., and Phillips, C. G. The distribution of monosynaptic excitation from the pyramidal tract and from primary spindle afferents to motoneurones of the babboon’s hand and forearm. Journal of Physiology (London), 1968, 198, 145–166.Google Scholar
  53. Courville, J. Somatotopical organization of the projection from the nucleus interpositus anterior of the cerebellum to the red nucleus. An experimental study in the cat with silver impregnation methods. Experimental Brain Research, 1966, 2, 191–215.CrossRefGoogle Scholar
  54. Curtis, D. R., and Eccles, J. C. Synaptic action during and after repetitive stimulation. Journal of Physiology (London), 1960, 150, 374–398.Google Scholar
  55. Diete-Spiff, K., Carli, F., and Pompeiano, O. Comparison of the effects of stimulation of the VIIIth cranial nerve, the vestibular nuclei or the reticular formation on the gastrocnemius muscle and its spindles. Archivio Italiano di Biologia, 1967 105, 243–272.Google Scholar
  56. Eccles, J. C. Presynaptic inhibition in the spinal cord. Progress in Brain Research, 1964, 12, 65–91.CrossRefGoogle Scholar
  57. Eccles, J. C., Eccles, R. M., and Lundberg, A. Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents. Journal of Physiology (London), 1957, 138, 227–252.Google Scholar
  58. Eccles, J. C., Fatt, P., and Landgren, S. Central pathway for direct inhibitory action of impulses in largest afferent nerve fibers to muscle. Journal of Neurophysiology, 1956, 19, 75–98.Google Scholar
  59. Eccles, J. C., Nicoll, A., Rantucci, T., Tábofiková, H., and Willey, T. J. Topographic studies on medial reticular nucleus. Journal of Neurophysiology, 1976, 39, 109–118.Google Scholar
  60. Eccles, J. C., Nicoll, R. A., Schwarz, D. W. F., Tábořiková, H., and Willey, T. J. Reticulospinal neurons with and without monosynaptic inputs from cerebellar nuclei. Journal of Neurophysiology, 1975, 38, 513–530.Google Scholar
  61. Eccles, R. M., and Lundberg, A. Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Archivio Italiano di Biologia, 1959, 97, 199–221.Google Scholar
  62. Edwards, S. B. The ascending and descending projections of the red nucleus in the cat: an experimental study using an autoradiographic method. Brain Research, 1972, 48, 45–63.CrossRefGoogle Scholar
  63. Ehrhardt, K. J., and Wagner, A. Labyrinthine and neck reflexes recorded from single spinal motoneurons in the cat. Brain Research, 1970, 19, 87–104.CrossRefGoogle Scholar
  64. Eklund, G., von Euler, C., and Rutkowski, S. Spontaneous and reflex activities of intercostal gamma motoneurones. Journal of Physiology (London), 1964, 171, 139–163.Google Scholar
  65. Eldred, E., and Hagbarth, K.-E. Facilitation and inhibition of gamma efferents by stimulation of certain skin areas. Journal of Neurophysiology, 1954, 17, 59–65.Google Scholar
  66. Eldred, E., Granit, R., and Merton, P. A. Supraspinal control of the muscle spindles and its significance. Journal of Physiology (London), 1953, 122, 498–523.Google Scholar
  67. Endo, K., Araki, T., and Kawai, T. Contra and ipsilateral cortical and rubral effects on fast and slow motoneurons of the cat. Brain Research, 1975, 88, 91–98.CrossRefGoogle Scholar
  68. Engberg, I. Reflexes to foot muscles in cat. Acta Physiologica Scandinavica, 1964, 62, Supplemen-tum 235.Google Scholar
  69. Engberg, I., Lundberg, A., and Ryall, R. W. Reticulospinal inhibition of transmission in reflex pathways. Journal of Physiology (London), 1968a, 194, 201–223.Google Scholar
  70. Engberg, I., Lundberg, A., and Ryall, R. W. Reticulospinal inhibition of interneurones. Journal of Physiology (London), 1968b, 194, 225–236.Google Scholar
  71. Evarts, E. V. Relation of pyramidal tract activity to force exerted during voluntary movements. Journal of Neurophysiology, 1968, 31, 14–27.Google Scholar
  72. Ezure, K., and Sasaki, S. Frequency-response analysis of vestibular-induced neck reflex in cat. I. Characteristics of neural transmission from horizontal semicircular canals to neck motoneurons. Journal of Neurophysiology, 1978, 41, 445–458.Google Scholar
  73. Ezure, K., Sasaki, S., Uchino, Y., and Wilson, V. J. Frequency-response analysis of vestibular-induced neck reflex in cat. II. Functional significance of cervical afferents and polysynaptic descending pathways. Journal of Neurophysiology, 1978, 41, 459–471.Google Scholar
  74. Feldman, A. G., and Orlovsky, G. N. Activity of interneurons mediating reciprocal Ia inhibition during locomotion. Brain Research, 1975, 84, 181–194.CrossRefGoogle Scholar
  75. Fernandez, C., and Goldberg, J. M. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. Journal of Neurophysiology, 1971, 34, 661–675.Google Scholar
  76. Fernandez, C., and Goldberg, J. M. Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. Journal of Neurophysiology, 1972, 35, 978–997.Google Scholar
  77. Fujita, Y., Rosenberg, J., and Segundo, J. P. Activity of cells in the lateral vestibular nucleus as a function of head position. Journal of Physiology (London), 1968, 196, 1–18.Google Scholar
  78. Gacik, R. R. The course and central termination of first order neurons supplying vestibular end organs in the cat. Acta Otolaryngologica, 1969, 254, 1–66.Google Scholar
  79. Gernandt, B. E., and Thulin, C.-A. Vestibular mechanisms of facilitation and inhibition of cord reflexes. American Journal of Physiology, 1953, 172, 653–660.Google Scholar
  80. Gernandt, B. E., and Thulin, C.-A. Reciprocal effects upon spinal motoneurons from stimulation of bulbar reticular formation. Journal of Neurophysiology, 1955, 18, 113–129.Google Scholar
  81. Ghez, C. Input-output relations of the red nucleus in the cat. Brain Research, 1975, 98, 93–108.CrossRefGoogle Scholar
  82. Goldberg, J. M., and Fernandez, C. Response dynamics of peripheral otolith neurons in barbiturate anesthetized squirrel monkey. Society for Neuroscience Abstracts, 1974, 231.Google Scholar
  83. Goodwin, G. M., and Luschei, E. S. Discharge of spindle afferents from jaw-closing muscles during chewing in alert monkeys. Journal of Neurophysiology, 1975, 38, 560–571.Google Scholar
  84. Graham-Brown, T. Studies in the physiology of the nervous system. IX. Reflex termination phenomena-rebound, rhythmic rebound and movements of progression. Quarterly Journal of Experimental Physiology, 1911, 4, 331–397.Google Scholar
  85. Granit, R. Receptors and Sensory Perception. New Haven: Yale University Press, 1955.Google Scholar
  86. Granit, R., and Holmgren, B. Two pathways from brainstem to gamma ventral horn cells. Acta Physiologica Scandinavica, 1955, 35, 93–108.CrossRefGoogle Scholar
  87. Granit, R., and Kaada, B. R., Influence of stimulation of central nervous structures on muscle spindles in cat. Acta Physiologica Scandinavica, 1953, 27, 130–160.CrossRefGoogle Scholar
  88. Granit, R., Job, C., and Kaada, B. R. Activation of muscle spindles in pinna re-reflex. Acta Physiologica Scandinavica, 1952, 27, 161–168.CrossRefGoogle Scholar
  89. Granit, R., Kellerth, J.-O., and Szumski, A. J. Intracellular recordings from extensor motoneurons activated across the gamma loop. Journal of Neurophysiology, 1966, 29, 530–544.Google Scholar
  90. Grigg, P., Harrigan, E. P., and Fogarty, K. E. Segmental reflexes mediated by joint afferent neurons in cat knee. Journal of Neurophysiology, 1978, 41, 9–14.Google Scholar
  91. Grillner, S. The influence of DOPA on the static and the dynamic fusimotor activity to the triceps surae of the spinal cat. Acta Physiologica Scandinavica, 1969, 77, 490–509.CrossRefGoogle Scholar
  92. Grillner, S. Locomotion in the spinal cat. In R. B. Stein, K. G. Pearson, R. S. Smith, and J. B. Redford (Eds.), Control of Posture and Locomotion. New York: Plenum, 1973.Google Scholar
  93. Grillner, S., and Lund, S. The origin of a descending pathway with monosynaptic action of flexor motoneurones. Acta Physiologica Scandinavica, 1968, 74, 274–284.CrossRefGoogle Scholar
  94. Grillner, S., Hongo, T., and Lund, S. Interaction between the inhibitory pathways from the Deiters’ nucleus and Ia afferents to flexor motoneurons. Acta Physiologica Scandinavica, 1966, 69, Supplementum 177, 1–61.Google Scholar
  95. Grillner, S., Hongo, T., and Lund, S. Descending monosynaptic and reflex control of 7-motoneu-rones. Acta Physiologica Scandinavica, 1969, 75, 592–613.CrossRefGoogle Scholar
  96. Grillner, S., Hongo, T., and Lund, S. The vestibulospinal tract. Effects on alpha-motoneurones in the lumbosacral spinal cord in the cat. Experimental Brain Research, 1970, 10, 94–120.CrossRefGoogle Scholar
  97. Grillner, S., Hongo, T., and Lund, S. Convergent effects on alpha motoneurones from the vestibulospinal tract and a pathway descending in the medial longitudinal fasciculus. Experimental Brain Research, 1971, 12, 457–479.CrossRefGoogle Scholar
  98. Gustafsson, B., and Jankowska, E. Direct and indirect activation of nerve cells by electrical pulses applied extracellularly. Journal of Physiology (London) 1976, 258, 33–61.Google Scholar
  99. Hagbarth, K.-E. Excitatory and inhibitory skin areas for flexor and extensor motoneurones. Acta Physiologica Scandinavica, 1952, 26, Supplementum 94, 1–58.Google Scholar
  100. Hagbarth, K.-E., and Vallbo, Å. B. Discharge characteristics of human muscle afferents during muscle stretch and contraction. Experimental Neurology, 1968, 22, 674–694.CrossRefGoogle Scholar
  101. Hagbarth, K-E., and Vallbo, Å. B. Single unit recordings from muscle nerves in human subjects. Acta Physiologica Scandinavica, 1969, 76, 321–324.CrossRefGoogle Scholar
  102. Hepp-Raymond, M.-C., Trouche, E., and Wiesendanger, M. Effects of unilateral and bilateral pyramidotomy on a conditioned rapid precision grip in monkeys (macaca fascicularis). Experimental Brain Research, 1974, 21, 519–527.Google Scholar
  103. Hoddevik, G. H., Brodai, A., and Walberg, F. The reticulovestibular projections in the cat. An experimental study with silver impregnation methods. Brain Research, 1975, 94, 383–399.CrossRefGoogle Scholar
  104. Holmqvist, B. Crossed spinal reflex actions evoked by valleys in somatic afferents. Acta Physiologica Scandinavica, 1961, 52, Supplementum 181, 1–66.Google Scholar
  105. Holmqvist, B., and Lundberg, A. On the organization of the supraspinal inhibitory control of inter-neurones of various spinal reflex arcs. Archivio Italiano di Biologia, 1959, 97, 340–356.Google Scholar
  106. Holmqvist, B., and Lundberg, A. Differential supraspinal control of synaptic actions evoked by volleys in the flexion reflex afferents in alpha motoneurones. Acta Physiologica Scandinavica, 1962, 54, Supplementum 186, 1–51.Google Scholar
  107. Hoist, E. von. Die Tätigkeit des Statolithenapparates im Wirbeltierlabyrinth. Naturwissenschaften, 1950, 37, 265–272.CrossRefGoogle Scholar
  108. Hongo, T., and Jankowska, E. Effects from the sensorimotor cortex on the spinal cord in cats with transsected pyramids. Experimental Brain Research, 1967, 3, 117–134.Google Scholar
  109. Hongo, T., Jankowska, E., and Lundberg, A. The rubrospinal tract. I. Effects on alpha-motoneurones innervating hindlimb muscles in cats. Experimental Brain Research, 1969a, 7, 344–364.Google Scholar
  110. Hongo, T., Jankowska, E., and Lundberg, A. The rubrospinal tract. II. Facilitation of interneuronal transmission in reflex paths to motoneurones. Experimental Brain Research, 1969b. 7, 365–391.Google Scholar
  111. Hongo, T., Jankowska, E., and Lundberg, A. The rubrospinal tract. HI. Effects on primary afferent terminals. Experimental Brain Research, 1972a, 15, 39–53.Google Scholar
  112. Hongo, T., Jankowska, E., and Lundberg, A. The rubrospinal tract. IV. Effects on interneurones. Experimental Brain Research, 1972b, 15, 54–78.Google Scholar
  113. Hongo, T., Kudo, N., and Tanaka, R. Effects from the vestibulospinal tract on the contralateral hindlimb motoneurones in the cat. Brain Research, 1971, 31, 220–223.CrossRefGoogle Scholar
  114. Hongo, T., Kudo, N., and Tanaka, R. The vestibulospinal tract: Crossed and uncrossed effects on hindlimb motoneurones in the cat. Experimental Brain Research, 1975, 24, 37–55.CrossRefGoogle Scholar
  115. Houk, J., and Henneman, E. Responses of Golgi tendon organs to active contractions of the soleus muscle of the cat. Journal of Neurophysiology, 1967, 30, 466–481.Google Scholar
  116. Hultborn, H. Convergence on interneurones in the reciprocal Ia inhibitory pathway to motoneurones. Acta Physiologica Scandinavica, 1972, Supplementum 375, 1–42.Google Scholar
  117. Hultborn, H., and Udo, M. Convergence in the reciprocal Ia inhibitory pathway of excitation from descending pathways and inhibition from motor axon collaterals. Acta Physiologica Scandinavica, 1972, 84, 95–108.CrossRefGoogle Scholar
  118. Hultborn, H., Illert, M., and Santini, M. Convergence on interneurones mediating the reciprocal Ia inhibition of motoneurones. I. Disynaptic Ia inhibition of Ia inhibitory interneurons. Acta Physiologica Scandinavica, 1976a, 96, 193–201.CrossRefGoogle Scholar
  119. Hultborn, H., Illert, M., and Santini, M. Convergence on interneurones mediating the reciprocal Ia inhibition of motoneurones. II. Effects from segmental flexor reflex pathways. Acta Physiologica Scandinavica, 1976b, 96, 351–367.CrossRefGoogle Scholar
  120. Hultborn, H., Illert, M., and Santini, M. Convergence on interneurones mediating the reciprocal Ia inhibition of motoneurones. III. Effects from supraspinal pathways. Acta Physiologica Scandinavica, 1976c, 96, 368–391.CrossRefGoogle Scholar
  121. Hultborn, H., Jankowska, E., and Lindström, S. Recurrent inhibition from motor axon collaterals of transmission in the Ia inhibitory pathway to motoneurones. Journal of Physiology (London), 1971a, 275, 591–612.Google Scholar
  122. Hultborn, H., Jankowska, E., and Lindström, S. Recurrent inhibition of interneurones monosy-naptically activated from group Ia afferents. Journal of Physiology (London), 1971b, 215, 613–636.Google Scholar
  123. Humphrey, D. R., and Rietz, R. R. Cells of origin of corticorubral projections from the arm area of primate motor cortex and their synaptic actions in the red nucleus. Brain Research, 1976, 110, 162–169.CrossRefGoogle Scholar
  124. Humphrey, D. R., Corrie, W. S., and Rietz, R. Sizes, intracortical locations and properties of major neuronal output populations in the arm area of primate motor cortex. Society for Neuroscience Abstracts, 1976, 2, 522.Google Scholar
  125. Hunt, C. C. The reflex activity of small nerve fibres. Journal of Physiology (London), 1951, 115, 456–469.Google Scholar
  126. Illert, M., and Tanaka, R. Transmission of corticospinal IPSP’s to cat forelimb motoneurones via high cervical propriospinal neurones and Ia inhibitory interneurones. Brain Research, 1976, 103, 143–146.CrossRefGoogle Scholar
  127. Illert, M., and Tanaka, R. Integration in descending motor pathways controlling the forelimb in the cat. 4. Corticospinal inhibition of forelimb motoneurones mediated by short propriospinal neurones. Experimental Brain Research, 1978, 31, 131–141.CrossRefGoogle Scholar
  128. Illert, M., Lundberg, A., and Tanaka, R. Integration in descending motor pathways controlling the forelimb in the cat. 1. Pyramidal effects on motoneurones. Experimental Brain Research, 1976a, 26, 509–519.Google Scholar
  129. Illert, M., Lundberg, A., and Tanaka, R. Integration in descending motor pathways controlling the forelimb in the cat. 2. Convergence on neurones mediating disynaptic cortical-motoneuronal excitation. Experimental Brain Research, 1976b, 26, 521–540.Google Scholar
  130. Illert, M., Lundberg, A., and Tanaka, R. Integration in descending motor pathways controlling the forelimb in the cat. 3. Convergence on propriospinal neurones transmitting disynaptic excitation from the corticospinal tract and other descending tracts. Experimental Brain Research, 1977, 29, 323–344.CrossRefGoogle Scholar
  131. Ito, M. Cerebellar control of vestibular neurones: Physiology and pharmacology. Progress in Brain Research, 1972, 37, 377–390.CrossRefGoogle Scholar
  132. Ito, M., and Yoshida, M. The cerebellar-evoked monosynaptic inhibition of Deiters’ neurones. Experientia, 1964, 20, 515–516.CrossRefGoogle Scholar
  133. Ito, M., Hongo, M., Yoshida, Y., Okada, Y., and Obata, K. Antidromic and transsynaptic activation of Deiters’ neurones from the spinal cord. Japanese Journal of Physiology, 1964, 14, 638–658.CrossRefGoogle Scholar
  134. Ito, M., Udo, M., and Mano, N. Long inhibitory and excitatory pathways converging onto cat reticular and Deiters’ neurons and their relevance to reticulofugal axons. Journal of Neurophysiology, 1970, 38, 210–226.Google Scholar
  135. Ito, M., Udo, M., Mano, N., and Kawai, N. Synaptic action of the fastigiobulbar impulses upon neurones in the medullary reticular formation and vestibular nuclei. Experimental Brain Research, 1970, 11, 29–47.CrossRefGoogle Scholar
  136. Jankowska, E., and Tarnecki, T. Extrapyramidal activation of muscles from sensorimotor cortex in cats. Experientia, 1965, 27, 656–657.CrossRefGoogle Scholar
  137. Jankowska, E., Jukes, M. G. M., Lund, S., and Lundberg, A. The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurons of flexors and extensors. Acta Physiologica Scandinavica, 1967a, 70, 369–388.CrossRefGoogle Scholar
  138. Jankowska, E., Jukes, M. G. M., Lund, S., and Lundberg, A. The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiologica Scandinavica, 1967b, 70, 389–402.CrossRefGoogle Scholar
  139. Jankowska, E., Lund, S., Lundberg, A., and Pompeiano, O. Inhibitory effects evoked through ventral reticulospinal pathways. Archivio Italiano di Biologia, 1968, 106, 124–140.Google Scholar
  140. Jankowska, E., Padel, Y., and Tanaka, R. The mode of activation of pyramidal tract cells by intracortical stimuli. Journal of Physiology (London), 1975a, 249, 617–636.Google Scholar
  141. Jankowska, E., Padel, Y., and Tanaka, R. Projections of pyramidal tract cells to α-motoneurones innervating hind-limb muscles in the monkey. Journal of Physiology (London), 1975b, 249, 637–667.Google Scholar
  142. Jankowska, E., Padel, Y., and Tanaka, R. Disynaptic inhibition of spinal motoneurones from the motor cortex in the monkey. Journal of Physiology (London), 1976, 258, 467–487.Google Scholar
  143. Jeneskog, T. Parallel activation of dynamic fusimotor neurones and a climbing fiber system from the cat brain stem. I. Effects from the rubral region. Acta Physiologica Scandinavica, 1974a, 91, 223–242.CrossRefGoogle Scholar
  144. Jeneskog, T. Parallel activation of dynamic fusimotor neurones and a climbing fiber system from the cat brain stem. II. Effects from the inferior olivary region. Acta Physiologica Scandinavica, 1974b, 92, 66–83.CrossRefGoogle Scholar
  145. Jeneskog, T., and Johansson, H. The rubro-bulbospinal path. A descending system known to influence dynamic fusimotor neurones and its interaction with distal cutaneous afferents in the control of flexor reflex afferent pathways. Experimental Brain Research, 1977, 27, 161–179.CrossRefGoogle Scholar
  146. Kanda, K., Burke, R. E., and Walmsley, B. Differential control of fast and slow twitch units in the decerebrate cat. Experimental Brain Research, 1977, 29, 57–74.CrossRefGoogle Scholar
  147. Kasahara, M., and Uchino, Y. Bilateral semicircular canal inputs to neurons in cat vestibular nuclei. Experimental Brain Research, 1974, 20, 285–296.CrossRefGoogle Scholar
  148. Kato, M., and Tanji, J. The effects of electrical stimulation of Deiters’ nucleus upon hindlimb γ-motoneurones of the cat. Brain Research, 1971, 30, 385–395.CrossRefGoogle Scholar
  149. Kirkwood, P. A., and Sears, T. A. Monosynaptic excitation of motoneurones from secondary endings of muscle spindles. Nature, 1974, 252, 243–244.CrossRefGoogle Scholar
  150. Koeze, T. H. The independence of corticomotoneuronal and fusimotor pathways in the production of muscle contraction by motor cortex stimulation. Journal of Physiology (London), 1968, 797, 87–105.Google Scholar
  151. Koeze, T. H., Phillips, C. G., and Sheridan, J. P. Thresholds of cortical activation of muscle spindles and α motoneurones of the baboon’s hand. Journal of Physiology (London), 1968, 195, 419–449.Google Scholar
  152. Kostyuk, P. G., and Pilyavsky, A. I. A possible direct interneuronal pathway from rubrospinal tract to motoneurones. Brain Research, 1969, 14, 158–166.CrossRefGoogle Scholar
  153. Kuffler, S. W., and Hunt, C. C. The mammalian small nerve fibers. A system for efferent nervous regulation of muscle spindle discharge. Research Publications. Association for Research in Nervous and Mental Diseases, 1952, 30, 24–37.Google Scholar
  154. Kuffler, S. W., Hunt, C. C., and Quilliam, J. P. Function of medullated small-nerve fibers in mammalian ventral roots: Efferent muscle spindle innervation. Journal of Neurophysiology, 1951, 14, 29–54.Google Scholar
  155. Kuno, M. Mechanisms of facilitation and depression of the excitatory synaptic potential in spinal motoneurones. Journal of Physiology (London), 1964, 175, 100–112.Google Scholar
  156. Kuypers, H. G. J. M. The organization of the “motor system.” International Journal of Neurology, 1963, 4, 78–90.Google Scholar
  157. Kuypers, H. G. J. M., and Lawrence, D. G. Cortical projections to the red nucleus and the brainstem in the rhesus monkey. Brain Research, 1967, 4, 151–188.CrossRefGoogle Scholar
  158. Kuypers, H. G. J. M., Fleming, W. R., and Farinholt, J. W. Subcorticospinal projections in the rhesus monkey. Journal of Comparative Neurology, 1962, 118, 107–137.CrossRefGoogle Scholar
  159. Landgren, S., Phillips, C. G., and Porter, R. Minimal synaptic actions of pyramidal impulses in some alpha motoneurones of the baboon’s hand and forearm. Journal of Physiology (London), 1962, 167, 91–141.Google Scholar
  160. Laporte, Y., and Lloyd, D. P. C. Nature and significance of the reflex connections established by large afferent fibers of muscular origin. American Journal of Physiology, 1952, 169, 609–621.Google Scholar
  161. Lassek, A. M. The Pyramidal Tract: Its Status in Medicine. Springfield, Ill. Charles C. Thomas, 1954.Google Scholar
  162. Laursen, A. M., and Wiesendanger, M. The effect of pyramidal lesions on response latency in cats. Brain Research, 1967, 5, 207–220.CrossRefGoogle Scholar
  163. Lawrence, D. G., and Kuypers, H. G. J. M. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain, 1968a, 97, 1–14.CrossRefGoogle Scholar
  164. Lawrence, D. G., and Kuypers, H. G. J. M. The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain stem pathway. Brain, 1968b, 97, 14–33.Google Scholar
  165. Leksell, L. The action potential and excitatory effects of the small ventral root fibers to skeletal muscle. Acta Physiologica Scandinavica, 1945, 10, Supplementum 31, 1–84.Google Scholar
  166. Lewis, R., and Brindley, G. S. The extrapyramidal motor map. Brain, 1965, 88, 397–406.CrossRefGoogle Scholar
  167. Lindsley, D. B., Schreiner, L. H., and Magoun, H. W. An electromyographic study of spasticity. Journal of Neurophysiology, 1949, 12, 197–205.Google Scholar
  168. Llinás, R., and Terzuolo, C. A. Mechanisms of supraspinal actions upon spinal cord activities. Reticular inhibitory mechanisms on alpha-extensor motoneurons. Journal of Neurophysiology, 1964, 27, 570–591.Google Scholar
  169. Llinás, R., and Terzuolo, C. A. Mechanisms of supraspinal actions upon spinal cord activities. Reticular inhibitory mechanisms upon flexor motoneurons. Journal of Neurophysiology, 1965, 28, 413–422.Google Scholar
  170. Lloyd, D. P. C. The spinal mechanism of the pyramidal system in cats. Journal of Neurophysiology, 1941, 4, 525–546.Google Scholar
  171. Lloyd, D. P. C. Neuron pattern controlling transmission of ipsilateral hindlimb reflexes in cat. Journal of Neurophysiology, 1943, 6, 292–315.Google Scholar
  172. Lloyd, D. P. C. Integrative pattern of excitation and inhibition in two-neuron arcs. Journal of Neurophysiology, 1946, 9, 439–444.Google Scholar
  173. Lowenstein, O., and Wersäll, J. A functional interpretation of the electron-microscopic structure of the sensory hair cells in the cristae of the elasmobranch Raja clavata in terms of directional activity. Nature, 1959, 184, 1807–1808.CrossRefGoogle Scholar
  174. Lund, S., and Pompeiano, O. Monosynaptic excitation of alpha motoneurones from supraspinal structures in the cat. Acta Physiologica Scandinavica, 1968, 73, 1–21.CrossRefGoogle Scholar
  175. Lundberg, A., and Voorhoeve, P. Effects from the pyramidal tract on spinal reflex arcs. Acta Physiologica Scandinavica, 1962, 56, 201–219.CrossRefGoogle Scholar
  176. Lundberg, A., Malmgren K., and Schomburg, E. D. Convergence from Ib, cutaneous and joint afferents in reflex pathways to motoneurones. Brain Research, 1975, 87, 81–84.CrossRefGoogle Scholar
  177. Lundberg, A., Malmgren, K., and Schomburg, E. D. Cutaneous facilitation of transmission in reflex pathways from Ib afferents to motoneurons. Journal of Physiology (London), 1977, 265, 763–780.Google Scholar
  178. McCouch, G. P., Deering, I. D., and Ling, T. H. Location of receptors for tonic neck reflexes. Journal of Neurophysiology, 1951, 14, 191–195.Google Scholar
  179. Maeda, M., Maunz, R. A., and Wilson, V. J. Labyrinthine influence on cat forelimb motoneurons. Experimental Brain Research, 1975, 22, 69–86.CrossRefGoogle Scholar
  180. Magni, F., and Willis, W. D. Cortical control of brain stem reticular neurons. Archivio Italiano di Biologia, 1964a, 102, 418–433.Google Scholar
  181. Magni, F., and Willis, W. D. Subcortical and peripheral control of brain stem reticular neurons. Archivio Italiano di Biologia, 1964b, 102, 434–448.Google Scholar
  182. Magnus, R. Some results of studies in the physiology of posture. Lancet, 1926, 211, 531–536.Google Scholar
  183. Magnus, R. Some results of studies in the physiology of posture. Lancet, 1926, 211, 585–588.Google Scholar
  184. Magoun, H. W., and Rhines, R. An inhibitory mechanism in the bulbar reticular formation. Journal of Neurophysiology, 1946, 9, 165–171.Google Scholar
  185. Mallart, A., and Martin, A. R. An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. Journal of Physiology (London), 1967, 193, 679–694.Google Scholar
  186. Markham, C. H., Precht, W., and Shimazu, H. Effect of stimulation of interstitial nucleus of Cajalon vestibular unit activity in the cat. Journal of Neurophysiology, 1966, 29, 493–507.Google Scholar
  187. Massion, J. The mammalian red nucleus. Physiological Reviews, 1967, 47, 383–436.Google Scholar
  188. Matthews, P. B. C. The differentiation of two types of fusimotor fibre by their effects on the dynamic response of muscle spindle primary endings. Quarterly Journal of Experimental Physiology and Psychology, 1962, 47, 324–333.Google Scholar
  189. Matthews, P. B. C. Mammalian Muscle Receptors and Their Central Actions. Baltimore: Williams and Wilkins, 1972.Google Scholar
  190. Melville-Jones, G., and Milsum, J. H. Characteristics of neural transmission from the semicircular canals to the vestibular nuclei of cats. Journal of Physiology (London), 1970, 209, 295–316.Google Scholar
  191. Merton, P. A. Speculations on the servo-control of movement. In G. E. W. Wolstenholme (Ed.), The Spinal Cord. London: Churchill, 1953.Google Scholar
  192. Muir, R. B., and Porter, R. The effect of a preceding stimulus on temporal facilitation at cortico-motoneuronal synapses. Journal of Physiology (London), 1973, 228, 749–763.Google Scholar
  193. Nyberg-Hansen, R. Sites and mode of transportation of reticulospinal fibers in the cat. An experimental study with silver impregnation methods. Journal of Comparative Neurology, 1965, 124, 71–100.CrossRefGoogle Scholar
  194. Nyberg-Hansen, R. Origin and termination of fibers from the vestibular nuclei descending in the medial longitudinal fasciculus. An experimental study with silver impregnation methods in the cat. Journal of Comparative Neurology, 1964, 122, 355–367.CrossRefGoogle Scholar
  195. Nyberg-Hansen, R., and Brodai, A. Sites and mode of termination of rubrospinal fibers in the cat. An experimental study with silver impregnation methods. Journal of Anatomy, 1963, 98, 235–253.Google Scholar
  196. Nyberg-Hansen, R., and Mascitti, T. A. Sites and termination of the vestibulospinal tract in the cat. An experimental study with silver impregnation methods. Journal of Comparative Neurology, 1964, 122, 369–387.CrossRefGoogle Scholar
  197. Onoda, N., and Burton, J. E. Discharge of red nucleus neurons in relation to a voluntary elbow flexion. Society for Neuroscience Abstracts, 1975, 7, 178.Google Scholar
  198. Orlovsky, G. N. Work of the reticulo-spinal neurones during locomotion. Biophysics, 1970, 15, 761–771.Google Scholar
  199. Orlovsky, G. N. The effect of different descending systems of flexor and extensor activity during locomotion. Brain Research, 1972a, 40, 359–371.CrossRefGoogle Scholar
  200. Orlovsky, G. N. Activity of vestibulospinal neurons during locomotion. Brain Research, 1972b, 46, 85–98.CrossRefGoogle Scholar
  201. Orlovsky, G. N. Activity of rubrospinal neurons during locomotion. Brain Research, 1972c, 46, 99–112.CrossRefGoogle Scholar
  202. Orlovsky, G. N., and Shik, M. L. Control of locomotion: A neurophysiological analysis of the cat locomotor system. In R. Porter (Ed.), International Review of Physiology: Neurophysiology II (Vol. 10). Baltimore: University Park Press, 1976.Google Scholar
  203. Oscarsson, O. Functional organization of spinocerebellar paths. In A. Iggo (Ed.), Handbook of Sensory Physiology. Vol. II. Somatosensory System. Berlin: Springer, 1973.Google Scholar
  204. Otero, J. B. Activity of red nucleus (RN) and motor cortex (MC) neurons during a continuous performance task in the monkey. Federation Proceedings, 1975, 34, 446.Google Scholar
  205. Peterson, B. W. Effect of tilting on the activity of neurons in the vestibular nuclei of the cat. Brain Research, 1967, 6, 606–609.CrossRefGoogle Scholar
  206. Peterson, B. W. Distribution of neural responses to tilting within vestibular nuclei of the cat. Journal of Neurophysiology, 1970, 33, 750–767.Google Scholar
  207. Peterson, B. W., and Abzug, C. Properties of projections from vestibular nuclei to medial reticular formation in the cat. Journal of Neurophysiology, 1975, 38, 1421–1435.Google Scholar
  208. Peterson, B. W., Anderson, M. E., and Filion, M. Responses of ponto-medullary reticular neurons to cortical, tectal and cutaneous stimuli. Experimental Brain Research, 1974, 21, 19–44.CrossRefGoogle Scholar
  209. Peterson, B. W., Filion, M., Felpel, L. P., and Abzug, C. Responses of medial reticular neurons to stimulation of the vestibular nerve. Experimental Brain Research, 1975, 221, 335–350.Google Scholar
  210. Peterson, B. W., Maunz, R. A., Pitts, N. G., and Mackel, R. G. Patterns of projection and branching of reticulospinal neurons. Experimental Brain Research, 1975, 23, 333–351.CrossRefGoogle Scholar
  211. Peterson, B. W., Pitts, N. G., Mackel, R. G., and Fukushima, K. Monosynaptic excitation and inhibition of neck motoneurons by a reticulospinal pathway. Society for Neuroscience Abstracts, 1976, 2, 528.Google Scholar
  212. Petras, J. M. Cortical, tectal and tegmental fiber connections in the spinal cord of the cat. Brain Research, 1967, 6, 275–324.CrossRefGoogle Scholar
  213. Phillips, C. G., and Porter, R. The pyramidal projection to motoneurones of some muscle groups of the babboon’s forelimb. Progress in Brain Research, 1964, 12, 222–242.CrossRefGoogle Scholar
  214. Pompeiano, O. Analisi degli effecti della stimulazione elletrica del nucleo rosso nel gatto decerebrate. Atti dell’Accademia Nazionale dei Lincei. Memorie. Sez. III, 1957, 22, 100–103.Google Scholar
  215. Pompeiano, O., and Brodai, A. Experimental demonstration of a somatotopical origin of rubrospinal fibers in the cat. Journal of Comparative Neurology, 1957, 108, 225–252.CrossRefGoogle Scholar
  216. Poppele, R. E. Response of gamma and alpha motor systems to phasic and tonic vestibular inputs. Brain Research, 1967, 6, 535–547.CrossRefGoogle Scholar
  217. Porter, R. Early facilitation at corticomotoneuronal synapses. Journal of Physiology (London), 1970, 207, 733–745.Google Scholar
  218. Porter, R., and Hore, J. Time course of minimal corticomotoneuronal excitatory postsynaptic potentials in lumbar motoneurons of the monkey. Journal of Neurophysiology, 1969, 32, 443–451.Google Scholar
  219. Precht, W., Grippo, J., and Wagner, A. Contribution of different types of central vestibular neurons to the vestibulospinal system. Brain Research, 1967, 4, 119–128.CrossRefGoogle Scholar
  220. Preston, J. B., Schende, M. C., and Uemura, K. The motor cortex-pyramidal system: Patterns of facilitation and inhibition on motoneurons innervating limb musculature of cat and baboon and their possible adaptive significance. In M. D. Yahr and D. P. Purpura (Eds.), Neuro-physiological Basis of Normal and Abnormal Motor Activities. New York: Raven Press, 1967.Google Scholar
  221. Rapaport, S., Susswein, A., Uchino, Y., and Wilson, V. J. Properties of vestibular neurones projecting to neck segments of the cat spinal cord. Journal of Physiology (London), 1977, 268, 493–510.Google Scholar
  222. Rexed, B. The cytoarchitectonic organization of the spinal cord in the cat. Journal of Comparative Neurology, 1952, 96, 415–495.CrossRefGoogle Scholar
  223. Rexed, B. A cytoarchitectonic atlas of the spinal cord in the cat. Journal of Comparative Neurology, 1954, 100, 297–379.CrossRefGoogle Scholar
  224. Rhines, R., and Magoun, H. W. Brain stem facilitation of cortical motor responses. Journal of Neurophysiology, 1946, 9, 219–229.Google Scholar
  225. Rinvik, E., and Walberg, F. Demonstration of a somatotopically arranged corticorubral projection in the cat. An experimental study with silver methods. Journal of Comparative Neurology, 1963, 120, 393–407.CrossRefGoogle Scholar
  226. Roberts, T. D. M. Changes in stretch reflexes in limb extension muscles during position reflexes from the labyrinth in the cat. Journal of Physiology (London), 1970, 211, 5p.Google Scholar
  227. Rosenberg, J. R., and Lindsay, K. W. Asymmetric tonic labyrinthine reflexes. Brain Research, 1973, 63, 347–350.CrossRefGoogle Scholar
  228. Rossi, G. F., and Brodai, A. Corticofugal fibres to the brainstem reticular formation. An experimental study in the cat. Journal of Anatomy, 1956, 90, 42–62.Google Scholar
  229. Ruch, T. G., and Watts, J. W. Reciprocal changes to reflex activity of the fore limbs induced by post-brachial “cold block” of the spinal cord. Journal of Physiology (London), 1934, 110, 362–375.Google Scholar
  230. Scheibel, M. E., and Scheibel, A. B. Structural substrate for integrative patterns in the brainstem reticular core. In H. H. Jasper et al. (Eds.), Reticular Formation of the Brain. Boston: Little, Brown, 1958.Google Scholar
  231. Schor, R. H. Responses of cat vestibular neurons to sinusoidal roll tilt. Experimental Brain Research, 1974, 20, 347–362.CrossRefGoogle Scholar
  232. Schreiner, L. H., Lindsley, D. B., and Magoun, H. W. Role of brainstem facilitatory systems in maintenance of spasticity. Journal of Neurophysiology, 1949, 72, 207–216.Google Scholar
  233. Sears, T. A. Efferent discharges in alpha and fusimotor fibres of intercostal nerves of the cat. Journal of Physiology (London), 1964, 174, 295–315.Google Scholar
  234. Severin, V. The role of the gamma motor system in the activation of the extensor alpha motor neurones during controlled locomotion. Biophysics, 1970, 15, 1138–1145.Google Scholar
  235. Shapovalov, A. I. Extrapyramidal monosynaptic and disynaptic control of mammalian alpha-motoneurons. Brain Research, 1972, 40, 105–115.CrossRefGoogle Scholar
  236. Shapovalov, A. I., Grantyn, A. A., and Kurchavyi, G. G. Short latency reticulospinal synaptic projections on α-motoneurons. Bulletin of Experimental Biology and Medicine, 1967, 64, 685–690.CrossRefGoogle Scholar
  237. Shapovalov, A. I., Karamjan, O. A., Kurchavyi, G. G., and Repina, Z. A. Synaptic actions evoked from the red nucleus in the spinal alpha-motoneurons in the rhesus monkey. Brain Research, 1971, 32, 325–348.CrossRefGoogle Scholar
  238. Shapovalov, A. I., Karamjan, O. A., Tamarova, Z. A., and Kurchavyi, G. G. Gerebello-rubrospinal effects on hindlimb motoneurons in the monkey. Brain Research, 1972, 47, 49–59.CrossRefGoogle Scholar
  239. Sherrington, C. S. Flexion-reflex of the limb, crossed extension reflex and reflex stepping and standing. Journal of Physiology (London), 1910, 40, 28–121.Google Scholar
  240. Shik, M. L., and Orlovsky, G. N. Nuerophysiology of locomotor automatism. Physiological Reviews, 1976, 56, 465–501.Google Scholar
  241. Shik, M. L., Severin, V., and Orlovsky, G. N. Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics, 1966, 11, 756–765.Google Scholar
  242. Shimazu, H., and Precht, W. Tonic and kinetic responses of cat’s vestibular neurons to horizontal angular accelerations. Journal of Neurophysiology, 1965, 28, 991–1013.Google Scholar
  243. Shimazu, H., and Precht, W. Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. Journal of Neurophysiology, 1966, 29, 467–492.Google Scholar
  244. Shimazu, H., Hongo, T., and Kubota, K. Two types of central influences on gamma motor system. Journal of Neurophysiology, 1962, 25, 309–323.Google Scholar
  245. Shinoda, Y., and Yoshida, K. Dynamic characteristics of responses to horizontal head angular acceleration in vestibulo-ocular pathway in the cat. Journal of Neurophysiology, 1973, 37, 643–673.Google Scholar
  246. Shinoda, Y., Arnold, A., and Asanuma, H. Spinal branching of corticospinal axons in the cat. Experimental Brain Research, 1976, 26, 215–234.CrossRefGoogle Scholar
  247. Sjöström, A., and Zanger, P. α-γ linkage in the spinal generator for locomotion in the cat. Acta Physiologica Scandinavica, 1975, 94, 130–132.CrossRefGoogle Scholar
  248. Smith, A. M., and Courville, J. The origin of the rubrospinal tract in primate as shown by the retrograde transport of horseradish peroxidase. Society for Neuroscience Abstracts, 1976, 2, 551.Google Scholar
  249. Soechting, J. F., Anderson, J. H., and Berthoz, A. Dynamic relation between natural vestibular inputs and activity of forelimb extensor muscles in the decerebrate cat. III. Motor output during rotations in the vertical plane. Brain Research, 1977, 120, 35–47.CrossRefGoogle Scholar
  250. Sprague, J. M., and Chambers, W. W. Control of posture by reticular formation and cerebellum in the intact, anesthetized and unanesthetized and in the decerebrate cat. American Journal of Physiology, 1954, 176, 52–64.Google Scholar
  251. Sprague, J. M., Schreiner, L. H., Lindsley, D. B., and Magoun, H. W. Reticulospinal influences on stretch reflexes. Journal of Neurophysiology, 1948, 11, 501–507.Google Scholar
  252. Stauffer, E. K., Watt, D. G. D., Taylor, A., Reinking, R. M., and Stuart, D. G. Analysis of muscle receptor connections by spike-triggered averaging. 2. Spindle group II afferents. Journal of Neurophysiology, 1976, 39, 1393–1402.Google Scholar
  253. Stein, B. M., and Carpenter, M. B. Central projections of portions of the vestibular ganglia innervating specific parts of the labyrinth in the rhesus monkey. American Journal of Anatomy, 1967, 120, 281–318.CrossRefGoogle Scholar
  254. Stewart, D. H., Preston, J. B., and Whitlock, D. G. Spinal pathways mediating motor cortex excitability changes in segmental motoneurons in pyramidal cats. Journal of Neurophysiology, 1968, 37, 928–937.Google Scholar
  255. Suzuki, J. I., and Cohen, B. Head, eye, body and limb movements from semicircular canal nerves. Experimental Neurology, 1964, 70, 393–405.CrossRefGoogle Scholar
  256. Terzuolo, C. A., Llinás, R., and Green, K. T. Mechanisms of supraspinal actions upon spinal cord activities. Distribution of reticular and segmental inputs in cat’s alpha motoneurons. Archivio Italiano di Biologia, 1965, 103, 635–651.Google Scholar
  257. Torvik, A., and Brodai, A. The origin of the reticulospinal fibers in the cat. An experimental study. Anatomical Record, 1957, 128, 113–137.CrossRefGoogle Scholar
  258. Travis, A. M., and Woolsey, C. N. Motor performance of monkeys after bilateral partial and total cerebral decortications. American Journal of Physical Medicine, 1956, 35, 273–310.Google Scholar
  259. Tsukahara, N., and Fuller, D. R. G. Conductance changes during pyramidally induced postsynaptic potentials in red nucleus neurons. Journal of Neurophysiology, 1969, 32, 34–42.Google Scholar
  260. Tsukahara, N., Fuller, D. R. G., and Brooks, V. P. Collateral pyramidal influences on corticoru-brospinal systems. Journal of Neurophysiology, 1968, 31, 467–484.Google Scholar
  261. Tsukahara, N., Toyama, K., and Kosaka, K. Electrical activity of red nucleus neurons investigated with intracellular microelectrodes. Experimental Brain Research, 1967, 4, 18–33.CrossRefGoogle Scholar
  262. Vasilenko, D. A., and Kostyuk, P. G. Functional properties of interneurons activated monosy-naptically by the pyramidal tract. Neuroscience Translations, 1967/68, 1, 66–72.CrossRefGoogle Scholar
  263. Vallbo, Å. B. Slowly adapting muscle receptors in man. Acta Physiologica Scandinavica, 1970, 78, 315–333.CrossRefGoogle Scholar
  264. Vallbo, Å. B. Muscle spindle response at the onset of isometric voluntary contractions in man. Time difference between fusimotor and skeletomotor effects. Journal of Physiology (London), 1971, 318, 405–431.Google Scholar
  265. Walberg, F. Light and electron microscopical data on the distribution of primary vestibular fibers. Progress in Brain Research, 1972a, 37, 79–88.CrossRefGoogle Scholar
  266. Walberg, F. Descending and reticular relations to the vestibular nuclei: Anatomy. Progress in Brain Research, 1972b, 37, 585–588.CrossRefGoogle Scholar
  267. Walberg, F. Cerebellovestibular relations: Anatomy. Progress in Brain Research, 1972c, 37, 361–376.CrossRefGoogle Scholar
  268. Wilson, V. J., and Maeda, M. Connections between semicircular canals and neck motoneurons in the cat. Journal of Neurophysiology. 1974, 37, 346–357.Google Scholar
  269. Wilson, V. J., and Yoshida, M. Bilateral connections between labyrinths and neck motoneurons. Brain Research, 1969a, 13, 603–607.CrossRefGoogle Scholar
  270. Wilson, V. J., and Yoshida, M. Comparison of effects of stimulation of Deiters’ nucleus and medial longitudinal fasciculus on neck, forelimb and hindlimb motoneurons. Journal of Neurophysiology, 1969b, 32, 743–758.Google Scholar
  271. Wilson, V. J., and Yoshida, M. Monosynaptic inhibition of neck motoneurons by the medial vestibular nucleus. Experimental Brain Research, 1969c, 9, 365–380.CrossRefGoogle Scholar
  272. Wilson, V. J., Gacek, R. R., Maeda, M. M., and Uchino, Y. Saccular and utricular input to cat neck motoneurons. Journal of Neurophysiology, 1977, 40, 63–73.Google Scholar
  273. Wilson, V. J., Kato, M., Peterson, B. W., and Wylie, R. M. A single-unit analysis of the organization of Deiters’ nucleus. Journal of Neurophysiology, 1967, 30, 603–619.Google Scholar
  274. Wilson, V. J., Yoshida, M., and Schor, R. H. Supraspinal monosynaptic excitation and inhibition of thoracic back motoneurons. Experimental Brain Research, 1970, 11, 282–295.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Peter C. Schwindt
    • 1
    • 2
  1. 1.Epilepsy CenterVeterans Administration HospitalUSA
  2. 2.Departments of Physiology and Biophysics and Medicine (Neurology)University of Washington School of MedicineSeattleUSA

Personalised recommendations