Neurotransmitter Systems

Anatomy and Pharmacology
  • William R. Crowley
  • Frank P. Zemlan


In recent years, our understanding of chemical synaptic transmission has advanced considerably. Underlying these advances have been research on the biochemistry of neurotransmitters, the development of drugs that affect these substances in relatively specific ways, and the use of various histological procedures that reveal in detail the anatomical projections of neurons containing specific neurotransmitters. These achievements enable physiological psychologists who are concerned with brain-behavior relations in general to approach the study of behavior from a neurochemical and neuro-pharmacological perspective.


Tyrosine Hydroxylase Nerve Terminal Locus Coeruleus Neurotransmitter System Thyrotropin Release Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. W., and Wang, R. Y., 1978, Physiology and pharmacology of central serotonergic neurons, in: Psychopharmacology: A Generation of Progress (M. A. Lipton, A. DiMascio, and K. F. Killam, eds.), pp. 171–184, Raven Press, New York.Google Scholar
  2. Anton-Tay, F., and Wurtman, R. J., 1971, Brain monoamines and endocrine function, in: Frontiers in Neuroendocrinology (L. Martini and W. F. Ganong, eds.), pp. 45–66, Oxford University Press, New York.Google Scholar
  3. Axelrod, J., 1974, Regulation of the neurotransmitter norepinephrine, in: The Neurosciences Third Study Program (F. O. Schmitt, and F. G. Worden, eds.), pp. 863–876, MIT Press, Cambridge, Massachusetts.Google Scholar
  4. Axelrod, J., 1977, Regulation of the synthesis, release and actions of catecholamine neurotransmitter, in: First European Symposium on Hormones and Cell Regulation (T. Dumont and A. Nunez, eds.), pp. 137–155, Elsevier, Amsterdam.Google Scholar
  5. Baumgarten, H. G. and Björklund, A., 1976, Neurotoxic indoleamines and monoamine neurons, Annu. Rev. Pharmacol. Toxicol. 16:101.PubMedCrossRefGoogle Scholar
  6. Bloom, F. E., 1975, Monoaminergic neurotoxins: Are they selective? J. Neural. Trans. 37:183.CrossRefGoogle Scholar
  7. Bloom, F. E., Battenberg, E., Rossier, J., Ling, N., Leppaluoto, J., Vargo, T. M., and Guillemin, R., 1977, Endorphins are located in the intermediate and anterior lobes of the pituitary gland, not in the neurohypophysis, Life Sci. 20:43.PubMedCrossRefGoogle Scholar
  8. Bloom, F. E., Rossier, J., Battenberg, E. L. F., Bayon, A., French, E., Henriksen, S. J., Siggins, G., Segal, D., Browne, R., Ling, M., and Guillemin, R., 1978, ß-Endorphin: Cellular localization, electrophysiological and behavioral effects, Adv. Biochem. Psychopharmacol. 18:89.PubMedGoogle Scholar
  9. Brownstein, M. J., 1977a, Biologically active peptides in the mammalian central nervous system, in: Peptides in Neurobiology (H. Gainer, ed.), pp. 145–170, Plenum Press, New York.CrossRefGoogle Scholar
  10. Brownstein, M. J., 1977b, Neurotransmitters and hypothalamic hormones in the central nervous system, Fed. Proc. 36:1960.PubMedGoogle Scholar
  11. Bunney, B. S., and Aghajanian, G. K., 1975, Evidence for drug actions on both pre-and postsynaptic catecholamine receptors in the CNS, in: Pre-and Postsynaptic Receptors (E. Usdin and W. E. Bunney, eds.), pp. 89–122, Marcel Dekker, New York.Google Scholar
  12. Butcher, L. L., 1975, Degenerative processes after punctate intracerebral administration of 6-hydroxydopamine, J. Neural. Trans. 37:189.CrossRefGoogle Scholar
  13. Carlsson, A., 1975a, Monoamine precursors and analogues, Pharmacol. Ther. [B] 1:381.Google Scholar
  14. Carlsson, A., 1975b, Monoamine-depleting drugs, Pharmacol. Ther. [B] 1:393.Google Scholar
  15. Carlsson, A., 1975c, Drugs acting through dopamine release, Pharmacol. Ther. [B] 1:401.Google Scholar
  16. Cooper, J. R., Bloom, F. E., and Roth, R. H., 1978, The Biochemical Basis ofNeuropharmacology ,Third Edition, Oxford University Press, New York.Google Scholar
  17. Creese, I., Burt, D. R., and Snyder, S. H., 1977, Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity, Science 197:596.PubMedCrossRefGoogle Scholar
  18. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. [Suppl. ] 232:1.Google Scholar
  19. DeWied, D., 1977, Peptides and behavior, Life Sci. 20:195.CrossRefGoogle Scholar
  20. Dews, P. B., 1972, Assessing the effects of drugs, in: Methods in Psychobiology ,Vol. 2 (R. D. Meyers, ed.), pp. 4–124, Academic Press, New York.Google Scholar
  21. Frederickson, R. C. A., 1977, Enkephalin pentapeptides-A review of current evidence for a physiological role in vertebrate neurotransmission, Life Sci. 21:23.PubMedCrossRefGoogle Scholar
  22. Fuxe, K., 1965, Evidence for the existence of monoamine-containing neurons in the CNS. IV. The distribution of monoamine nerve terminals in the CNS, Acta Physiol. Scand. [Suppl. ] 247:36.Google Scholar
  23. Fuxe, K., and Jonsson, G., 1974, Further mapping of central 5-hydroxytryptamine neurons: Studies with the neurotoxic dihydroxytryptamines, Adv. Biochem. Psychopharmacol. 10:1.PubMedGoogle Scholar
  24. Haefely, W., Bartholini, G., and Pletscher, A., 1976, Monoaminergic drugs: General pharmacology, Pharmacol. Ther. [B] 2:185.Google Scholar
  25. Harvey, J. A., and McMaster, S. E., 1975, Fenfluramine: Evidence for a neurotoxic action on midbrain and a long term depletion of serotonin, Psychopharmacol. Commun. 1:217.PubMedGoogle Scholar
  26. Havlicek, U., Rezek, M., and Freisen, H., 1976, Somatostatin and thyrotropin releasing hormone: Central effect on sleep and motor system, Pharmacol. Biochem. Behav. 4:455.PubMedCrossRefGoogle Scholar
  27. Hedqvist, P., 1977, Basic mechanisms of prostaglandin action on autonomic neurotransmission, Annu. Rev. Pharmacol. Toxicol. 17:259.PubMedCrossRefGoogle Scholar
  28. Hökfelt, T., and Ungerstedt, U., 1973, Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurones: An electron and fluorescence microscopic study with specialreference to intracerebral injection on the nigro-striatal dopamine system, Brain Res. 60:269.PubMedCrossRefGoogle Scholar
  29. Hökfelt, T., Fuxe, K., Goldstein, M., and Johansson, O., 1974, Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain, Brain Res. 66:235.CrossRefGoogle Scholar
  30. Hökfelt, T., Fuxe, K., Johansson, O., Jeffcoate, S., and White, N., 1975, Thyrotropin releasing hormone (TRH)-containing nerve terminals in certain brain stem nuclei and in the spinal cord, Neurosci. Lett. 1:133.PubMedCrossRefGoogle Scholar
  31. Hökfelt, T., Elde, R., Johansson, O., Luft, R., Nilsson, G., and Arimura, A., 1976a, Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat, Neuroscience 1:131.PubMedCrossRefGoogle Scholar
  32. Hökfelt, T., Johansson, O., Fuxe, K., Goldstein, M., and Park, D., 1976b, Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. I. Tyrosine hydroxylase in the mes-and diencephalon, Med. Biol. ,54:427.PubMedGoogle Scholar
  33. Hökfelt, T., Elde, R., Johansson, O., Terenius, L., and Stein, L., 1977a, The distribution of enkephalin-immunoreactive cell bodies in the rat central nervous system,Neurosci. Lett. 5:25.PubMedCrossRefGoogle Scholar
  34. Hökfelt, T., Johansson, O. ,Fuxe, K., Goldstein, M., and Park, D., 1977b, Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. II. Tyrosine hydroxylase in the telencephalon, Med. Biol. 55:21.PubMedGoogle Scholar
  35. Hökfelt, T., Ljungdahl, Å. ,Terenius, L., Elde, R., and Nilsson, G., 1977c, Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: Enkephalin and substance P,Proc. Natl. Acad. Sci. USA 74:3081.PubMedCrossRefGoogle Scholar
  36. Hökfelt, T., Elde, R., Fuxe, K., Johansson, O., Ljungdahl, A., Goldstein, A., Luft, R., Efendic, S., Nilsson, G., Terenius, L., Ganten, D., Jeffcoate, S. L., Rehfeld, J., Said, S., Perez de la Mora, M., Passani, L., Tapia., R., Teran, L., and Palacios, R., 1978a, Aminergic and peptidergic pathways in the nervous system with special reference to the hypothalamus, in: The Hypothalamus (S. Reichlin, R.J. Baldessarini, and J. B. Martin, eds.), pp. 69–135, Raven Press, New York.Google Scholar
  37. Hökfelt, T., Elde, R., Johansson, O., Ljungdahl, A., Schultzberg, M., Fuxe, K., Goldstein, M., Nilsson, G., Pernow, B., Terenius, L., Ganten, D., Jeffcoate, S. L., Rehfeld, J., and Said, S., 1978b, Distribution of peptide containing neurons, in: Psychopharmacology: A Generation of Progress (M. A. Lipton, A. DiMascio, and K. F. Killam, eds.), pp. 39–66, Raven Press, New York.Google Scholar
  38. Jacobowitz, D. M., 1978, Monoaminergic pathways in the central nervous system, in: Psycho-pharmacology: A Generation of Progress (M. A. Lipton, A. DiMascio, and K. F. Killam, eds.), pp. 119–129, Raven Press, New York.Google Scholar
  39. Jacobowitz, D. M. and Palkovits, M., 1974, Topographic atlas of catecholamine and acetyl-cholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon, diencephalon), J. Comp. Neurol. 157:13.PubMedCrossRefGoogle Scholar
  40. Javoy, F., Sotelo, C., Herbet, A., and Agid, Y., 1976, Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system, Brain Res. 102:201.PubMedCrossRefGoogle Scholar
  41. Johansson, O., Hökfelt, T., Elde, R. P., Schultzberg, M., and Terenius, L., 1978, Immunohistochemical distribution of enkephalin neurons, Adv. Biochem. Psychopharmacol. 18:51.PubMedGoogle Scholar
  42. King, J. C., and Gerall, A. A., 1976, Localization of luteinizing hormone-releasing hormone, J. Histochem. Cytochem. 24:829.PubMedCrossRefGoogle Scholar
  43. Kobayashi, R. M., Palkovits, M., Kopin, I. J., and Jacobowitz, D. M., 1974, Biochemical mapping of noradrenergic nerves arising from the rat locus coeruleus, Brain Res. 77:269.PubMedCrossRefGoogle Scholar
  44. Kostrezewa, R., and Jacobowitz, D. M., 1974, Pharmacological actions of 6-hydroxydopamine, Pharmacol. Rev. 26:199.Google Scholar
  45. Krnjevic, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54:418.Google Scholar
  46. Krulich, L., Quijada, M., Wheaton, J. E., Illner, P., and McCann, S. M. 1977, Localization of hypophysiotropic neurohormones by assay of sections from various brain areas, Fed. Proc. 36:1953.PubMedGoogle Scholar
  47. Leeman, S. E., and Mroz, E. A., 1974, Substance P, Life Sci. 15:2033.PubMedCrossRefGoogle Scholar
  48. Lindvall, O., and Björklund, A., 1974, The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method, Acta Physiol. Scand. [Suppl.] 412: 1.Google Scholar
  49. Lipton, M. A., DiMascio, A., and Killam, K. H., 1978, Psychopharmacology: A Generation of Progress ,Raven Press, New York.Google Scholar
  50. McCann, S. M., and Moss, R. L., 1975, Putative neurotransmitters involved in discharging gonadotropin releasing neurohormones and the action of LH releasing hormone on the CNS, Life Sci. 16:833.PubMedCrossRefGoogle Scholar
  51. McLennan, H., 1970, Synaptic Transmission ,W. B. Saunders, Philadelphia.Google Scholar
  52. Meyers, R. D., 1971, Methods for chemical stimulation of the brain, in: Methods in Psychobiology ,Vol. 1 (R. D. Meyers, ed.), pp. 247–279, Academic Press, New York.Google Scholar
  53. Meyers, R. D., 1974, Handbook of Drug and Chemical Stimulation of the Brain ,Van Nostrand-Rein-hold, New York.Google Scholar
  54. Moore, R. Y., and Bloom, F. E., 1978, Central catecholamine neuron systems: Anatomy and physiology of the dopamine systems, Annu. Rev. Neurosci. 1:129.PubMedCrossRefGoogle Scholar
  55. Moore, R. Y., and Bloom, F. E., 1979, Central catecholamine neuron systems: Anatomy and physiology of the norepinephrine and epinephrine systems, Annu. Rev. Neurosci. 2:113.PubMedCrossRefGoogle Scholar
  56. Moore, R. Y., Halaris, A. E., and Jones, B. E., 1978, Serotonin neurons of the midbrain raphe: Ascending projections, J. Comp. Neurol. 180:417.PubMedCrossRefGoogle Scholar
  57. Mroz, E. A., Brownstein, M. J., and Leeman, S. E., 1977, Evidence for substance P in the striato-nigral tract, Brain Res. 125:305.PubMedCrossRefGoogle Scholar
  58. Nathanson, J. A., 1977, Cyclic nucleotides and nervous system function, Physiol. Rev. 57:157.PubMedGoogle Scholar
  59. O’Donohue, T. L., Crowley, W. R., and Jacobowitz, D. M., 1979, Biochemical mapping of the noradrenergic ventral bundle projection sites: Evidence for a noradrenergic-dopaminergic interaction, Brain Res. 172:87.PubMedCrossRefGoogle Scholar
  60. Palkovits, M., and Jacobowitz, D. M., 1974, Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain II. Hindbrain (mesencephalon, rhombencephalon), J. Comp. Neurol. 157:29.PubMedCrossRefGoogle Scholar
  61. Parsons, J. A., Erlandsen, S. L., Hegre, O. D., McEvoy, R. C., Elde, R. P., 1976, Central and peripheral localization of somatostatin; immunoenzyme immunocytochemical studies, J. Histochem. Cytochem. 24:872.PubMedCrossRefGoogle Scholar
  62. Pelligrino, L. J., and Cushman, A. J., 1971, Use of the stereotaxic technique, in: Methods in Psychobiology ,Vol. 1 (R. D. Meyers, ed.), pp. 67–90, Academic Press, New York.Google Scholar
  63. Reis, D. J., Joh, T. H., Ross, R. A. and Pickel, V. M., 1974, Reserpine selectively increases tyrosine hydroxylase and dopamine-ß-hydroxylase enzyme protein in central noradrenergic neurons, Brain Res. ,81:380.PubMedCrossRefGoogle Scholar
  64. Roth, R. H., Salzman, P. M., and Nowycky, M. C., 1978, Impulse flow and short term regulation of transmitter biosynthesis in central catecholaminergic neurons, in: Psychopharmacology: A Generation of Progress (M. A. Lipton, A. DiMascio, and K. F. Killam, eds.), pp. 185–198, Raven Press, New York.Google Scholar
  65. Routtenberg, A., 1972, Intracranial chemical injection and behavior: A critical review,Behav. Biol. 7:601.PubMedCrossRefGoogle Scholar
  66. Sachs, C., and Jonsson, G., 1975, Mechanisms of action of 6-hydroxydopamine,Biochem. Pharmacol. 24:1.PubMedCrossRefGoogle Scholar
  67. Sanders-Bush, E., and Massari, V. J., 1977, Actions of drugs that deplete serotonin, Fed. Proc. 36:2149.PubMedGoogle Scholar
  68. Setalo, G., Vigh, S., Schally, A. V., Arimura, A., and Flerko, B., 1976, Immunohistological study of the origin of LH-RH-containing fibers of the rat hypothalamus, Brain Res. 103:597.PubMedCrossRefGoogle Scholar
  69. Shute, C. C. D., and Lewis, P. R., 1966, Cholinergic and monoaminergic pathways in the hypothalamus, Br. Med. Bull 22:221.PubMedGoogle Scholar
  70. Starke, K., 1977, Regulation of noradrenaline release by presynaptic receptor systems, Rev. Physiol. Biochem. Pharmacol. 77:1.PubMedCrossRefGoogle Scholar
  71. Sternberger, L. A., and Hoffman, G. E., 1978, Immunocytology of luteinizing hormone-releasing hormone, Neuro endocrinology 25:111.Google Scholar
  72. Strömböm, U., 1975, On the functional role of pre-and postsynaptic catecholamine receptors in brain, Acta Physiol. Scand. [Suppl. ] 431:1.Google Scholar
  73. Ungerstedt, U., 1971a, Histochemical studies on the effect of intracerebral and intraventricular injections of 6-hydroxydopamine on monoamine neurons in the rat brain, in: 6-Hydroxy-dopamine and Catecholamine Neurons (T. Malmfors and H. Thoenen, eds.), pp. 101–134, American Elsevier, New York.Google Scholar
  74. Ungerstedt, U., 1971b, Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand. [Suppl.] 367:1.Google Scholar
  75. Van Der Gugten, J., Palkovits, M., Wijnen, H. L. J. M., and Versteeg, D. H. G., 1976, Regional distribution of adrenaline in rat brain, Brain Res. 107:171.PubMedCrossRefGoogle Scholar
  76. Weiner, N. I., 1974, A critical assessment of methods for the determination of monoamine synthesis turnover rates in vivo, Adv. Biochem. Psychopharmacol. 12:143.PubMedGoogle Scholar
  77. Westfall, T. C., 1977, Local control of adrenergic neurotransmission, Physiol Rev. 57:659.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • William R. Crowley
    • 1
  • Frank P. Zemlan
    • 2
  1. 1.Department of PharmacologyUniversity of Tennessee Center for the Health SciencesMemphisUSA
  2. 2.Department of PharmacologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations