Advertisement

Cellular Biochemistry of Hormone Action in Brain and Pituitary

  • Bruce S. McEwen

Abstract

With the introduction of tritium-labeling techniques for steroid hormones in the late 1950s, the investigation of the cellular biochemistry of hormone action made enormous advances. More recent development of iodination procedures for thyroid hormone and protein hormones has made possible the investigation of the action of these hormones at the molecular level. We are now in a position to see the broad outlines of two major modes of hormone action on target cells, and a discussion of this topic forms the central theme around which this chapter revolves.

Keywords

Thyroid Hormone Hormone Action Sexual Differentiation Thyrotropin Release Hormone Gonadal Steroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, N. S. III, and Fanestil, D. D., 1976, Corticoid receptors in rat brain: Evidence for an aldosterone receptor, Endocrinology 98:676.PubMedGoogle Scholar
  2. Balasz, R., 1971, Effects of hormones on the biochemical maturation of the brain, in: Influence of Hormones on the Nervous System, Proceedings of the International Society of Psychoneuroendrocrinology, Brooklyn, 1970 (D.H. Ford, ed.), pp. 150–164, Karger, Basel.Google Scholar
  3. Bapna, J., Neff, N. H., and Costa, E., 1971, A method for studying norepinephrine and serotonin metabolism in small regions of rat brain: Effect of ovariectomy on amine metabolism in anterior and posterior hypothalamus, Endocrinology 89:1345.PubMedGoogle Scholar
  4. Barley, J., Ginsburg, M., Greenstein, B. D., Maclusky, N. J., Thomas, P. J., 1974, A receptor mediating sexual differentiation? Nature 252:259.PubMedGoogle Scholar
  5. Barnea, A., and Lindner, H. R., 1972, Short-term inhibition of macromolecular synthesis and androgen-induced sexual differentiation of the rat brain, Brain Res. 45:479.PubMedGoogle Scholar
  6. Beattie, C. W., Rodgers, C. H., and Soyka, L. F., 1972, Influence of ovariectomy and ovarian steroids on hypothalamic tyrosine hydroxylase activity in the rat, Endocrinology 91:276.PubMedGoogle Scholar
  7. Berendes, H. D., 1967, The hormone ecdysone as effector of specific changes in the pattern of gene activities of drosophilia hydei, Chromosoma 22:274.PubMedGoogle Scholar
  8. Blaustein, J. D., and Wade, G. N., 1978, Progestin binding by brain and pituitary cell nuclei and female rat sexual behavior, Brain Res. 140:360.PubMedGoogle Scholar
  9. Borgeat, P., Labrie, F., Drouin, J., and Bélanger, A., 1974, Inhibition of adenosine 3′,5′- monophosphate accumulation in anterior pituitary gland in vitro by growth hormone-release inhibiting hormone, Biochem. Biophys. Res. Commun. 56:1052.PubMedGoogle Scholar
  10. Brown, M., and Vale, W., 1975, Central nervous system effects of hypothalamic peptides, Endocrinology 96:1333.PubMedGoogle Scholar
  11. Chytil, F., and Toft, D., 1972, Corticoid binding component in brain,J. Neurochem. 19:2877.PubMedGoogle Scholar
  12. Clark, J. H., Anderson, J., and Peck, E. J., Jr., 1972, Receptor-estrogen complex in the nuclear fraction of rat uterine cells during the estrous cycle, Science 176:528.PubMedGoogle Scholar
  13. Clayton, R. B., Kogura, J., and Kraemer, H. C., 1970, Sexual differentiation of the brain: Effects of testosterone on brain RNA metabolism in newborn female rats, Nature 226:810.PubMedGoogle Scholar
  14. Convey, E. M., and Reece, R. P., 1969, Influence of the estrous cycle on the nucleic acid content of the rat anterior pituitary, Proc. Soc. Exp. Biol. Med. 132:878.PubMedGoogle Scholar
  15. Cooper, K. J., Fawcett, C. P., and McCann, S. M., 1974, Variations in pituitary responsiveness to a luteinizing hormone/follicle stimulating hormone releasing factor (LH-RF/FSH-RF) preparation during the rat estrous cycle, Endocrinology 95:1293.PubMedGoogle Scholar
  16. Darrah, H. K., MacKinnon, P. C. B., and Rogers, A. W., 1961, Sexual differentiation in the brain of the neonatal rat, J. Physiol. (Lond.) 218:22P.Google Scholar
  17. DeGroot, L. J., and Torresani, J., 1975, Triiodothyronine binding to isolated liver cell nuclei, Endocrinology 96:357.PubMedGoogle Scholar
  18. deKloet, R., Wallach, G., and McEwen, B. S., 1975, Differences in corticosterone and dexamethasone binding to rat brain and pituitary, Endocrinology 96:598.Google Scholar
  19. Denef, C., Magnus, C., and McEwen, B. S., 1973, Sex differences and hormonal control of testosterone metabolism in rat pituitary and brain,J. Endocrinol. 59:605.PubMedGoogle Scholar
  20. deVellis, J., McEwen, B. S., Cole, R., and Inglish, D., 1974, Relations between glucocorticoid binding and glycerolphosphate dehydrogenase induction in a rat glial cell line, Trans. Am. Soc. Neurochem. 5:125.Google Scholar
  21. Dörner, G., and Staudt, J., 1969, Perinatal structural sex differentiation of the hypothalamus in rats, Neuroendocrinology 5:103.PubMedGoogle Scholar
  22. Doughty, C. Booth, J. E., McDonald, P. G., and Parrott, R. F., 1975, Effects of oestradiol-l7β, oestradiol benzoate and the synthetic oestrogen, RU2858 on sexual differentiation in the neonatal female rat,J. Endocrinol. 67:419–424.PubMedGoogle Scholar
  23. Dupont, A., Labrie, F., Pelletier, G., Puviani, R., Coy, D. H., Serially, A. V., and Kastin, A. J., 1975, Distribution of radioactivity in the organs of the rat and mouse after injection of L-3H-prolyl-L-leucyl-L-glycinamide,J. Endocrinol. 63:243.Google Scholar
  24. Dyer, R. G., and Dyball, R. E. J., 1974, Evidence for a direct effect of LRF and TRF on a single unit activity in the rostral hypothalamus, Nature 252:486.PubMedGoogle Scholar
  25. Eayrs, J. T., 1964, Endocrine influence on cerebral development, Arch. Biol. (Liege) 75:529.Google Scholar
  26. Engström, G., Svensson, T. H., and Waldeck, B., 1974, Thyroxine and brain catecholamines: Increased transmitter synthesis and increased receptor sensitivity, Brain Res. 77:471.PubMedGoogle Scholar
  27. Epstein, A. N., and Hsiao, S., 1975, Angiotensin as dipsogen, in: Control Mechanisms of Drinking (G. Peters, J. T. Fitzsimmons, and L. Peters-Haefeli, eds.), Springer-Verlag, pp. 108–116 New York.Google Scholar
  28. Ford, D. H., 1968, Central nervous system-thyroid interrelationships, Brain Res. 7:329.PubMedGoogle Scholar
  29. Fregly, M. J., and Waters, I. W., 1966, Effect of mineralocorticoids on spontaneous sodium chloride appetite of adrenalectomized rats, Physiol. Behav. 1:65.Google Scholar
  30. Fuxe, K., Hökfelt, T., and Nilsson, O., 1969, Castration, sex hormones and tuberinfundibular dopamine neurons, Neurodendocrinology 5:107–120.Google Scholar
  31. Ginsburg, M., Greenstein, B. D., MacLusky, N. J., Morris, I. D., and Thomas, P. J., 1974, An improved method for the study of high-affinity steroid binding: Oestradiol binding in brain and pituitary, Steroids 23:773.PubMedGoogle Scholar
  32. Giulian, D., Pohorecky, L. A., and McEwen, B. S., 1973, Effects of gonadal steroids upon brain 5-hydroxy-tryptamine levels in the neonatal rat, Endocrinology 93:1329.PubMedGoogle Scholar
  33. Giulian, D., McEwen, B. S., and Pohorecky, L. A., 1974, Altered development of the rat brain serotonergic system after disruptive neonatal experience, Proc. Natl. Acad. Sci. USA 74:4106.Google Scholar
  34. Goldberg, N. D., O’Dea, R. F., and Haddox, M. K., 1973, Cyclic GMP, in: Advances in Cyclic Nucleotide Research, Vol. 3 (P. Greengard and G. A. Robison, eds.), pp. 155–223, Raven Press, New York.Google Scholar
  35. Gordon, J. H., and Reichlin, S., 1974, Changes in pituitary responsiveness to luteinizing hormone-releasing factor during the rat estrous cycle, Endocrinology 94:974.PubMedGoogle Scholar
  36. Gorski, R. A., and Shryne, J., 1972, Intracerebral antibiotics and androgenization of the neonatal female rat, Neuroendocrinology 10:109.PubMedGoogle Scholar
  37. Gradwell, P. B., Everitt, B. J., and Herbert, J., 1975, 5-Hydroxytryptamine in the central nervous system and sexual receptivity of female rhesus monkeys, Brain Res. 88:281.PubMedGoogle Scholar
  38. Grant, G., Vale, W., and Guillemin, R., 1973a Characteristics of the pituitary binding sites for thyrotropin-releasing factor, Endocrinology 92:1629.PubMedGoogle Scholar
  39. Grant, G., Vale, W., and Rivier, J., 1973b, Pituitary binding sites for 3H-labeled luteinizing hormone releasing factor (LRF), Biochem. Biophys. Res. Commun. 50:771.PubMedGoogle Scholar
  40. Griffiths, E. C., and Hooper, K. C., 1973, Changes in hypothalamic peptidase activity during the oestrous cycle in the adult female rat, Acta Endocrinol. (Kbh.) 74:41.Google Scholar
  41. Griffiths, E. C., and Hooper, K. C., 1974, Peptidase activity in different areas of the rat hypothalamus, Acta Endocrinol. (Kbh.) 77:10.Google Scholar
  42. Grosser, B. I., Stevens, W., and Reed, D. J., 1973, Properties of corticosterone-binding macromolecules from rat brain cytosol, Brain Res. 57:387.PubMedGoogle Scholar
  43. Hagen, G. A., and Solberg, L. A., Jr., 1974, Brain and cerebrospinal fluid permeability to intravenous thyroid hormones, Endocrinology 95:1398.PubMedGoogle Scholar
  44. Hagen, G. A., Fleshman, J. W., and Diuguid, L. I., 1975, Newborn brain triiodothyronine (T3) receptors and cooperative binding effect, Program, The Endocrine Society 5th Annual Meeting, New York June 18–20, 1975, abstract #387.Google Scholar
  45. Haglund, H., 1971, Isoelectric focusing in pH gradients—a technique for fractionation and characterization of ampholytes, Methods Biochem. Anal. 19:1.PubMedGoogle Scholar
  46. Hamburgh, M., 1968, An analysis of the action of thyroid hormone on development based on in vivo and in vitro studies, Gen. Comp. Endocrinol. 10:198.PubMedGoogle Scholar
  47. Hayashi, S., and Gorski, R. A., 1974, Critical exposure time for androgenization by intracranial crystals of testosterone propionate in neonatal female rats, Endocrinology 94:1161.PubMedGoogle Scholar
  48. Hayes, J. R., Johnson, D. G., Koerker, D., and Williams, R. H., 1975, Inhibition of gastrin release by somatostatin in vitro, Endocrinology 96:1374.Google Scholar
  49. Heil, H., Meltzer, V., Kuhl, H., Abraham, R., and Taubert, H. D., 1971, Stimulation of L-cystine-aminopeptidase activity by hormonal steroids and steroid analogs in the hypothalamus and other tissues of the female rat, Fertil. Steril. 22:181.PubMedGoogle Scholar
  50. Huidobro-Toro, J. P., Scotti de Carolis, A., and Longo, V. G., 1974, Action of two hypothalamic factors (TRH, MIF) and of angiotensin II on the behavioral effects of L-DOPA and 5-hydroxytryptophan in mice, Pharmacol. Biochem. Behav. 2:105.PubMedGoogle Scholar
  51. Irving, R., and Mainwaring, W. I. P., 1974, Partial purification of steroid-receptor complexes by DNA-cellulose chromatography and isoelectric focusing,J. Steroid Biochem 5:711.Google Scholar
  52. Jackson, I. M. D., and Reichlin, S., 1974, Thyrotropin-releasing hormone (TRH): Distribution in hypothalamic and extrahypothalamic brain tissues of mammalian and submammalian chordates, Endocrinology 95:854.PubMedGoogle Scholar
  53. Johnson, D. C., 1972, Sexual differentiation on gonadotropin patterns, Aw. Zool. 12:193.Google Scholar
  54. Joustra, M., Söderquist, B., and Fischer, L., 1967, Gel filtration in organic solvents,J. Chromatogr. 28:21.PubMedGoogle Scholar
  55. Kalimi, M., Colman, P., and Feigelson, P., 1975, The “activated” hepatic glucocorticoid-receptor complex,J. Biol. Chem. 250:1080.PubMedGoogle Scholar
  56. Kaneko, T., Saito, S., Oka, H., Oda, T., and Yanaihara, N., 1973, Effects of synthetic LH-RH and its analogs on rat anterior pituitary cyclic AMP and LH and FSH release, Metabolism 22:77.PubMedGoogle Scholar
  57. Kato, J., and Onouchi, T., 1977, Specific progesterone receptors in the hypothalamus and anterior hypophysis of the rat, Endocrinology 101:920.PubMedGoogle Scholar
  58. Keller, H. H., Bartholini, G., and Pletscher, A., 1974, Enhancement of cerebral noradrenaline turnover by thyrotropin-releasing hormone, Nature 248:528.PubMedGoogle Scholar
  59. King, R. J. B., and Mainwaring, W. I. P., 1974, Steroid-Cell Interactions, University Park Press, Baltimore.Google Scholar
  60. Kizer, J. S., Palkovits, M., Zivih, J., Brownstein, M., Saavedra, J. M., and Kopin, I. M., 1974, The effect of endocrinology manipulations on tyrosine hydroxylase and dopamine-β-hydroxylase activities in individual hypothalamic nuclei of the adult male rat, Endocrinology 95:799.PubMedGoogle Scholar
  61. Kobayashi, F., and Gorski, R. A., 1970, Effects of antibiotics on androgenization of the neonatal female rat, Endocrinology 86:285.PubMedGoogle Scholar
  62. Koerker, D. J., Ruch, W., Chideckel, E., Palmer, J., Goodner, C. J., Ensinck, J., and Gale, C. C., 1974, Somatostatin: Hypothalamic inhibitor of the endocrine pancreas, Science 184:482.PubMedGoogle Scholar
  63. Kuhl, H., Rosniatowski, C., Oen, S., and Taubert, H., 1974, Sex steroids stimulate the activity of hypothalamic arylamidases in the rat, Acta Endocrinol. (Kbh.) 76:1.Google Scholar
  64. Ladosky, W., 1967, Anovulatory sterility in rats neonatally injected with stilbestrol, Endokrinologie 52:259.PubMedGoogle Scholar
  65. Ladosky, W., and Gaziri, L. C. J., 1970, Brain serotonin and sexual differentiation of the nervous system, Neuro endocrinology 6:168.Google Scholar
  66. Langan, T. A., 1973, Protein kinases and protein kinase substrates, in: Advances in Cyclic Nucleotide Research, Vol. 3 (P. Greengard and G. A. Robison, eds.), pp. 99–153, Raven Press, New York.Google Scholar
  67. Lassman, M. N., and Mulrow, P. J., 1974, Deficiency of deoxycorticosterone-binding protein in the hypothalamus of rats resistant to deoxycorticosterone-induced hypertension. Endocrinology 94:1541.PubMedGoogle Scholar
  68. Leavitt, W. W., Chen, T. J., and Allen, T. C., 1977, Regulation of progesterone receptor formation by estrogen action, Ann. N. Y. Acad. Sci. 286:210.PubMedGoogle Scholar
  69. Libertun, C., Cooper, K.J., Fawcett, C. P., and McCann, S. M., 1974, Effects of ovariectomy and steroid treatment on hypophyseal sensitivity to purified LH-releasing factor (LRF), Endocrinology 94:518.PubMedGoogle Scholar
  70. Lieberburg, I., and McEwen, B. S., 1975a, Estradiol-17β: A metabolite of testosterone recovered in cell nuclei from limbic areas of neonatal rat brains, Brain Res. 85:165.PubMedGoogle Scholar
  71. Lieberburg, I., and McEwen, B. S., 1975b, Estradiol-17β: A metabolite of testosterone recovered in cell nuclei from limbic areas of adult male rat brains, Brain Res. 91:171.PubMedGoogle Scholar
  72. Lieberburg, I., and McEwen, B. S., 1977, Brain cell nuclear retention of testosterone metabolites, 5α-dihydrotestosterone and estradiol-17β in adult rats, Endocrinology 100:588.PubMedGoogle Scholar
  73. Ling, A. S. C., 1970, The influence of the thyroid gland on brain Cholinesterase activity of mature rats, Brain Res. 22:73.PubMedGoogle Scholar
  74. Lisk, R. D., 1967, Sexual behavior: Hormonal control, in: Neuro endocrinology, Vol. 2 (L. Martini and W. F. Ganong, eds), pp. 197–239, Academic Press, New York.Google Scholar
  75. Litteria, M., 1973, Inhibitory action of neonatal androgenization on the incorporation of 3H-lysine in specific hypothalamic nuclei of the adult female rat. Exp. Neurol. 41:395.PubMedGoogle Scholar
  76. Litteria, M., and Thorner, M. W., 1974a, Inhibition in the incorporation of 3H-lysine in the Purkinje cells of the adult female rat after neonatal androgenization, Brain Res. 69:170.PubMedGoogle Scholar
  77. Litteria, M., and Thorner, M. W., 1974b, Inhibitory effect of neonatal estrogenization on the incorporation of 3H-lysine in the Purkinje cells of the adult male and female rat. Brain Res. 80:152.PubMedGoogle Scholar
  78. Litteria, M., and Thorner, M. W., 1975, Inhibitory action of neonatal estrogenization on the incorporation of 3H-lysine into proteins of specific hypothalamic nuclei in the adult male rat, Brain Res. 90:179.Google Scholar
  79. Luine, V. N., Khylchevskaya, R. I., and McEwen, B. S., 1974, Oestrogen effects on brain and pituitary enzyme activities,J. Neurochem. 23:925.PubMedGoogle Scholar
  80. Luine, V. N., Khylchevskaya, R. I., and McEwen, B. S., 1975a, Effect of gonadal hormones on enzyme activities in brain and pituitary of male and female rats, Brain Res. 86:283.PubMedGoogle Scholar
  81. Luine, V. N., Khylchevskaya, R. I., and McEwen, B. S., 1975b, Effect of gonadal steroids on activities of monoamine oxidase and choline acetylase in rat brain, Brain Res. 86:293.PubMedGoogle Scholar
  82. MacLeod, K. M., and Baxter, J. D., 1975, DNA binding of thyroid hormone receptors, Biochem. Biophys. Res. Commun. 62:577.PubMedGoogle Scholar
  83. MacLusky, N.J., and McEwen, B. S., 1980, Progestin receptors in rat brain: Distribution and properties of cytoplasmic progestin binding sites, Endocrinology 106:192–202.PubMedGoogle Scholar
  84. Martin, R. G., and Ames, B. N., 1961, A method for determining the sedimentation behavior of enzymes: Application to protein mixtures,J. Biol. Chem. 236:1372.PubMedGoogle Scholar
  85. Maurer, R. A., and Woolley, D. E., 1974, Demonstration of nuclear 3H-estradiol binding in hypothalamus and amygdala of female, androgenized-female, and male rats, Neuroendocrinology 16:137.PubMedGoogle Scholar
  86. McCann, S. M., and Moss, R. L., 1975, Putative neurotransmitters involved in discharging gonadotropin-releasing neurohormones and the action of LH-releasing hormone on the CNS, Life Sci. 16:833.PubMedGoogle Scholar
  87. McEwen, B. S., and Luine, V. N., 1979, Specificity, mechanisms, and functional significance of steroid-receptor interactions in the brain and pituitary, in: Biologie Cellulaire des Processes Neurosécrétoires Hypothalamiques, CNRS Colloque Internationaux du CNRS No. 280, pp. 239–265, CNRS, Paris.Google Scholar
  88. McEwen, B. S., and Pfaff, D. W., 1973, Chemical and physiological approaches to neuroendocrine mechanisms: Attempts at integration, in: Frontiers in Neuroendocrinology (W. F. Ganong and L. Martini, eds.), pp. 267–335, Oxford University Press, New York.Google Scholar
  89. McEwen, B. S., and Zigmond, R. E., 1972, Isolation of brain cell nuclei, in: Research Methods in Neurochemistry, Vol. 1 (N. Marks and R. Rodnight, eds.), pp. 140–161, Plenum Press, New York.Google Scholar
  90. McEwen, B. S., Zigmond, R. E., and Gerlach, J. L., 1972a, Sites of steroid binding and action in the brain, in: Structure and Function of Nervous Tissue, Vol. 5 (G. H. Bourne, ed.), pp. 205–291, Academic Press, New York.Google Scholar
  91. McEwen, B. S., Magnus, C., and Wallach, G., 1972b, Soluble corticosterone-binding macromolecules extracted from rat brain, Endocrinology 90:217.PubMedGoogle Scholar
  92. McEwen, B. S., Pfaff, D. W., Chaptal, C., and Luine, V., 1975a, Brain cell nuclear retention of 3H-estradiol doses able to promote lordosis: Temporal and regional aspects, Brain Res. 86: 155.PubMedGoogle Scholar
  93. McEwen, B. S., Plapinger, L., Chaptal, C., Gerlach, J., and Wallach, G., 1975b, Role of fetoneonatal estrogen binding proteins in the association of estrogen with neonatal brain cell nuclear receptors, Brain Res. 96:400–406.PubMedGoogle Scholar
  94. McEwen, B. S., Gerlach, J. L., and Micco, D. J., Jr., 1975c, Putative glucocorticoid receptors in hippocampus and other regions of the rat brain, in: The Hippocampus: A Comprehensive Treatise (R. Isaacson and K. Pribram, eds.), pp. 285–322, Plenum Press, New York.Google Scholar
  95. McEwen, B. S., Lieberburg, I., Chaptal, C., and Krey, L. C., 1977, Aromatization: Important for sexual differentiation of the neonatal rat brain, Horm. Behav. 9:249–263.PubMedGoogle Scholar
  96. Metcalf, G., 1974, TRH: A possible mediator of thermoregulation, Nature 252:310.PubMedGoogle Scholar
  97. Moguilewsky, M., and Raynaud, J. P., 1978, Progestin binding sites in the rat hypothalamus, pituitary, and uterus, Steroids 30:99–109.Google Scholar
  98. Moss, R. L., and McCann, S. M., 1973, Induction of mating behavior in rats by luteinizing hormone-releasing factor, Science 181:177.PubMedGoogle Scholar
  99. Nadler, R. D., 1968, Maculinization of female rats by intracranial implantation of androgen in infancy,J. Comp. Physiol. Psychol. 66:157.PubMedGoogle Scholar
  100. Nadler, R. D., 1972, Intrahypothalamic exploration of androgen-dependent brain loci in neonatal female rats, Trans. N. Y. Acad. Sci. Ser. II 34:572.Google Scholar
  101. Nadler, R. D., 1973, Further evidence on the intrahypothalamic locus for androgenization of female rats, Neuroendocrinology 12:110.PubMedGoogle Scholar
  102. Naftolin, F., Ryan, K.J., Davies, I.J., Reddy, V. V., Flores, F., Kuhn, M., White, R. J., Takaoka, Y., and Wolin, L., 1975, The formation of estrogens by central neuroendocrine tissues, Recent Prog. Horm. Res. 31:295.PubMedGoogle Scholar
  103. Nakai, T., Kigawa, T., and Sakamoto, S., 1971, 3H-Leucine uptake of hypothalamic nuclei in fetal male rats and its fluctuation after castration, Endocrinol. Jpn. 18:353.PubMedGoogle Scholar
  104. Nicholson, J. L., and Altman, J., 1972, Synaptogenesis in the rat cerebellum: Effects of early hypo-and hyperthyroidism, Science 176:530.PubMedGoogle Scholar
  105. Oliver, C., Eskay, R. L., Ben-Jonathan, N., and Porter, J. C., 1974, Distribution and concentration of TRH in the rat brain, Endocrinology 95:540.PubMedGoogle Scholar
  106. O’Malley, B.W., and Means, A. R., 1974, Female steroid hormones and target cell nuclei, Science 183:610.PubMedGoogle Scholar
  107. Oppenheimer, J. H., Schwartz, H. L., and Surks, M. I., 1974, Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: Liver, kidney, pituitary, heart, brain, spleen and testis, Endocrinology 95:897.PubMedGoogle Scholar
  108. Patel, Y. C., Weir, G. C., and Reichlin, S., 1975, Anatomic distribution of somatostatin (SRIF) in brain and pancreatic islets as studied by radioimmunoassay (RIA), in: Program, The Endocrine Society 57th Annual Meeting, New York, June 18–20, 1975, abstract #154, J. B. Lippincott, Philadelphia.Google Scholar
  109. Pfaff, D. W., 1973, Luteinizing hormone-releasing factor potentiates lordosis behavior in hypophysectomized ovariectomized female rats, Science 182:1148.PubMedGoogle Scholar
  110. Pfaff, D. W., and Keiner, M., 1973, Atlas of estradiol-concentrating cells in the central nervous system of the female rat,J. Comp. Neurol. 151:121.PubMedGoogle Scholar
  111. Pfaff, D., Lewis, C., Diakow, C., and Keiner, M., 1973, Neurophysiological analysis of mating behavior responses as hormone-sensitive reflexes, in: Progesss in Physiological Psychology, Vol. 5 (E. Stellar and J. M. Sprague, eds.), pp. 253–297, Academic Press, New York.Google Scholar
  112. Plapinger, L., and McEwen, B. S., 1978, Gonadal steroid-brain interactions in sexual differentiation, in: Biological Determinants of Sexual Behavior (J. Hutchison, ed.), pp. 153–218, John Wiley and Sons, New York and London.Google Scholar
  113. Plotnikoff, N. P., Kastin, A. J., Anderson, M., and Schally, A. V., 1971, DOPA potentiation by a hypothalamic factor, MSH release inhibiting hormone (MIF), Life Sci. 10:1279.Google Scholar
  114. Plotnikoff, N. P., Kastin, A. J., Anderson, M., and Schally, A. V., 1972, Oxotremorine antagonism by a hypothalamic hormone, melanocyte-stimulating hormone release inhibiting factor (MIF), Proc. Soc. Exp. Biol. Med. 140:811.PubMedGoogle Scholar
  115. Raisman, G., and Field, P. M., 1973, Sexual dimorphism in the neuropil of the preoptic area of the rat and its dependence on neonatal androgen, Brain Res. 54:1.PubMedGoogle Scholar
  116. Rastogi, R. B., and Singhal, R. L., 1974, Alterations in brain norepinephrine and tyrosine hydroxylase activity during experimental hypothyroidism, Brain Res. 81:253.PubMedGoogle Scholar
  117. Raynaud, J. P., Mercier-Bodard, C., and Baulieu, E. E., 1971, Rat estradiol binding plasma protein (EBP), Steroids 18:767.PubMedGoogle Scholar
  118. Reichlin, S., Martin, J. B., Mitnick, M. A., Boshaus, R. L., Grimm, Y., Bollinger, J., Gordon, J., and Malacara, J., 1972, The hypothalamus in pituitary-thyroid regulation, Recent Prog. Horm. Res. 28:229.PubMedGoogle Scholar
  119. Renaud, L. P., and Martin, J. B., 1975, Thyrotropin releasing hormone (TRH): Depressant action on central neuronal activity, Brain Res. 86:150.PubMedGoogle Scholar
  120. Renaud, L. P., Martin, J. B., and Brezeau, P., 1975, Depressant action of TRH, LH-RH and somatostatin on activity of central neurons, Nature 255:233.PubMedGoogle Scholar
  121. Robinson, J. A., and Leavitt, W. W., 1971, Estrogen related changes in anterior pituitary RNA levels, Proc. Soc. Exp. Biol. Med. 139:471.Google Scholar
  122. Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1971, Cyclic AMP, Academic Press, New York.Google Scholar
  123. Salaman, D. F., and Birkett, S., 1974, Androgen-induced sexual differentiation of the brain is blocked by inhibitors of DNA and RNA synthesis, Nature 247:109.PubMedGoogle Scholar
  124. Samuels, H. H., Tsai, J. S., and Cintron, R., 1973, Thyroid hormone action: A cell culture system responsive to physiological concentrations of thyroid hormones, Science 181:1253.PubMedGoogle Scholar
  125. Samuels, H. H., Tsai, J. S., and Casanova, J., 1974, Thyroid hormone action: In vitro demonstration of putative receptors in isolated nuclei and soluble nuclear extracts, Science 184:1188.PubMedGoogle Scholar
  126. Sar, M., and Stumpf, W. E., 1973, Neurons of the hypothalamus concentrate 3H-progesterone or its metabolites, Science 182:1266.PubMedGoogle Scholar
  127. Schildkraut, J. J., Winokur, A., Draskoczy, P. R., and Hensle, J. H., 1971. Changes in norepinephrine turnover in rat brain during chronic administration of imipramine and protriptyline: A possible explanation for the delay in onset of clinical antidepressant effects, Am. J. Psychiatry 127:1032.PubMedGoogle Scholar
  128. Schooley, R. A., Friedkin, S., and Evans, E. S., 1966, Re-examination of the discrepancy between acidophil numbers and growth hormone concentration in the anterior pituitary gland following thyroidectomy, Endocrinology 79:1053.PubMedGoogle Scholar
  129. Schultz, F. M., and Wilson, J. D., 1974, Virilization of the Wolffian duct in the rat fetus by various androgens, Endocrinology 94:979.PubMedGoogle Scholar
  130. Schutz, G., Beato, M., and Feigelson, P., 1973, Messenger RNA for hepatic tryptophan oxygenase: Its partial purification, its translation in a heterologous cell-free system, and its control by glucocorticoid hormones, Proc. Natl. Acad. Sci. USA 70:1218.PubMedGoogle Scholar
  131. Sheridan, P. J., Sar, M., and Stumpf, W. E., 1974a, Autoradiographic localization of 3H-estradiol or its metabolities in the central nervous system of the developing rat, Endocrinology 94: 1386.PubMedGoogle Scholar
  132. Sheridan, P. J., Sar, M., and Stumpf, W. E., 1974b, Interaction of exogenous steroids in the developing rat brain, Endocrinology 95:1749.PubMedGoogle Scholar
  133. Siegel, L. M., and Monty, K.J., 1966, Determination of molecular weights and fractional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases, Biochim. Biophys. Acta 112:346.PubMedGoogle Scholar
  134. Spona, J., 1974, LH-RH interaction with the pituitary plasma membrane is affected by sex steroids, FEBS Lett. 39:221.PubMedGoogle Scholar
  135. Sternberger, L. A., 1974, Immunocytochemistry, Prentice Hall, Englewood Cliffs.Google Scholar
  136. Stumpf, W. E., 1968, Cellular and subcellular 3H-estradiol localization in the pituitary by autoradiographs, Z. Zeilforsch. 92:23.Google Scholar
  137. Swaneck, G. E., Highland, E., and Edelman, I. S., 1969, Stereospecific nuclear and cytosol aldosterone-binding proteins of various tissues, Nephron 6:297.PubMedGoogle Scholar
  138. Thoenen, H., Mueller, R. A., and Axelrod, J., 1969, Trans-synaptic induction of adrenal tyrosine hydroxylase,J. Pharmacol. Exp. Ther. 169:249.PubMedGoogle Scholar
  139. Van Wimersma Greidanus, T. B., Dogterom, J., and de Wied, D., 1975, Intraventricular administation of anti-vasopressin serum inhibits memory consolidation in rats, Life Sci. 16:637.PubMedGoogle Scholar
  140. Vilchez, Martinez, J. A., Arimura, A., Debeljuk, L., Schally, A. V., 1974, Biphasic effect of estradiol benzoate on the pituitary responsiveness to LH-RH, Endocrinology 94:1300.Google Scholar
  141. Wade, G. N., and Feder, H. H., 1972, [1,2–3H]Progesterone uptake by guinea-pig brain and uterus: Differential localization, time-course of uptake and metabolism and effects of age, sex, estrogen-priming and competing steroids, Brain Res. 45:525.PubMedGoogle Scholar
  142. Wade, G. N., Harding, C. F., and Feder, H.H., 1973, Neural uptake of [1,2–3H]progesterone in ovariectomized rats, guinea pigs and hamsters: Correlation with species differences in behavioral responsiveness, Brain Res. 61:357.PubMedGoogle Scholar
  143. Wakabayashi, K., Date, Y., and Tamaoki, B.-I., 1973, On the mechanism of action of luteinizing hormone-releasing factor and prolactin release inhibiting factor, Endocrinology 92:698.PubMedGoogle Scholar
  144. Warembourg, M., 1975, Radioautographic study of the rat brain after injection of [1,2–3H]corticosterone, Brain Res. 89:61.PubMedGoogle Scholar
  145. Westley, B. R. and Salaman, D. F., 1975, Incorporation of 3H-uridine into RNA in the hypothalamus of the neonatal rat. J. Endocrinol. 64:58p.Google Scholar
  146. Williams, D. L., 1975, The estrogen receptor: A minireview, Life Sci. 15:583.Google Scholar
  147. Wilson, J. D., 1973, Testosterone uptake by the urogenital tract of the rabbit embryo, Endocrinology 92:1192.PubMedGoogle Scholar
  148. Winokur, A., and Utiger, R. D., 1974, Thyrotropin-releasing hormone: Regional distribution in rat brain, Science 185:265.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Bruce S. McEwen
    • 1
  1. 1.Laboratory of NeuroendocrinologyThe Rockefeller UniversityNew YorkUSA

Personalised recommendations