Laboratory Tests and Procedures

  • Olen L. RiggsJr.
  • Carl E. Locke
  • Norman E. Hamner


So that respective plant processes and parameters influencing prospective application of an anodic protection system can be understood, specific laboratory tests must be conducted. These tests should be designed to include all pertinent conditions involved in the plant system under consideration. The data which result from these tests provides an overall corrosion-rate profile for the specific metal/electrolyte system over the preselected potential range. The tests can be conducted using either the potentiostatic or potentiodynamic mode. The potential range of interest can be scanned very slowly, or by rapid-scan techniques, the choice depending upon the system in question. Further, the tests should be designed so that the resulting data can be used to (1) provide a basis for quality control, (2) establish performance parameters, and (3) serve as a comparison standard for improved developments. In view of the diversity of natural conditions, very serious consideration should be given to laboratory testing to improve the reliability of, and confidence in, the resulting information.


Polarization Cell Crevice Corrosion Electrode Holder Anodic Protection Saturated Calomel Elec 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. D. Henry and B. E. Wilde, Corrosion 25, 515–519, December (1969).Google Scholar
  2. 2.
    J. O. Sudbury, O. L. Riggs Jr., and D. A. Shock, Corrosion 16, 57t–62t, February (1960).Google Scholar
  3. 3.
    A. Hickling, Trans. Faraday Soc, 38, 27 (1942).CrossRefGoogle Scholar
  4. 4.
    ASTM Designation G-5, Book of ASTM Standards, Part 31, ASTM, Philadelphia (1970).Google Scholar
  5. 5.
    ASTM Designation G-3, Book of ASTM Standards, Part 31, ASTM, Philadelphia (1969).Google Scholar
  6. 6.
    N. D. Greene, Experimental Electrode Kinetics, Rensselaer Polytechnic Institute, Troy, (1965).Google Scholar
  7. 7.
    P. E. Morris and R. C. Scarberry, Corrosion 28, December (1972).Google Scholar
  8. 8.
    O. L. Riggs, Jr., Corrosion 20, 275t–281t, September (1964).Google Scholar
  9. 9.
    O. L. Riggs, Jr., Corrosion 26, June (1970).Google Scholar
  10. 10.
    D. D. MacDonald and D. Owen, High Temperature, High Pressure Electrochemistry in Aqueous Solutions, D. de G. Jones, J. Rater, and R. W. Staehle, eds., NACE, Houston (1976). pp. 513 – 523.Google Scholar
  11. 11.
    I. L. Rozenfeld and I. K. Marshakob, Zavod. Lab 21, 1346 (1955).Google Scholar
  12. 12.
    R. R. Salem, Zavod. Lab 26, 291 (1960).Google Scholar
  13. 13.
    B. Vlanovskii, Zhur. Prikl. Khim 39, 814 (1960).Google Scholar
  14. 14.
    G. Bombara, D. Sinigaglid, and G. Taccani, Electrochim. Met 3, 81 (1968).Google Scholar
  15. 15.
    W. D. France, Jr., and N. D. Greene, Corrosion 24, 247 (1968).Google Scholar
  16. 16.
    R. J. Picard and N. D. Greene, Corrosion 30, 393 (1974).Google Scholar
  17. 17.
    D. A. Jones and N. D. Greene, Corrosion 25, 367 (1969).Google Scholar
  18. 18.
    E. A. Lizlovs and A. P. Bond, J. Electrochem. Soc 116, 574 (1969).CrossRefGoogle Scholar
  19. 19.
    W. D. France, Jr., J. Electrochem. Soc 114, 818 (1967).CrossRefGoogle Scholar
  20. 20.
    E. A. Lizlovs, J. Electrochem. Soc 117, 10, (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Olen L. RiggsJr.
    • 1
  • Carl E. Locke
    • 2
  • Norman E. Hamner
  1. 1.Kerr — McGee Technical CenterOklahoma CityUSA
  2. 2.University of OklahomaNormanUSA

Personalised recommendations