Mechanisms of Opioid Analgesia

  • Abraham Wikler


In man, the presence of pain is inferred by the observer from the verbal reports of the subject and/or certain behavioral characteristics expressing his or her emotional state, and from evidence, actual or presumed, of tissue injury. Given the same or equivalent degrees of tissue injury, the severity of pain and demands for its relief vary widely. For example, Beecher (1956, 1968) noted that at the Anzio Beachhead in World War II, 150 soldiers with severe war wounds (trauma to bones, intrathoracic and intra-abdominal trauma) complained far less of pain, and only 32% wanted a narcotic within 7.2–12.5 hr after the trauma, compared with 150 males who had sustained comparable injuries in civilian disasters, 83% of whom wanted a narcotic within 3.0–4.4 hr after the trauma. In animals, pain is inferred by the observer from certain “nociceptive” reflexes and behaviors (attempts to escape, struggling, attacking, vocalizing). Yet here, too, the manifestations of pain, given the same or equivalent degrees of injury, are not invariable. Thus, Pavlov (1927) reported an experiment by Eroféeva in which she used strong electric (faradic) stimulation of the skin (which normally evokes vigorous unconditioned defense reflexes) as the conditioned stimulus for the formation of an alimentary conditioned reflex, by repeatedly pairing the former with presentation of food to the food-deprived dog.


Electrical Stimulation Dorsal Horn Pain Threshold Raphe Nucleus Opioid Analgesia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. E., 1976, Naloxone reversal of analgesia produced by brain stimulation in the human, Pain 2: 161–166.PubMedCrossRefGoogle Scholar
  2. Akaike, A., Shibata, T., Satoh, M., and Takagi, H., 1978, Analgesia induced by microinjection of morphine into, and electrical stimulation of, the nucleus reticularis paragigantocellularis of rat medulla oblongata, Neuropharmacol. 17: 775–778.CrossRefGoogle Scholar
  3. Akil, H., and Liebeskind, J. C., 1975, Monoaminergic mechanisms of stimulation-produced analgesia, Brain Res. 94: 279–296.Google Scholar
  4. Akil, H., and Mayer, D. J., 1972, Antagonism of stimulation-produced analgesia by p-CPA, a serotonin synthesis inhibitor, Brain Res. 44: 692–697.PubMedCrossRefGoogle Scholar
  5. Akil, H., Mayer, D. J., and Liebeskind, J. C., 1972, Comparaison chez le rat entre l’analgésie induite par stimulation de la substance grise périaqueducal et l’analgésie morphinique, C. R. Acad. Sci. (Paris) 274: 3603–3605.Google Scholar
  6. Albus, K., Schott, M., and Herz, A., 1970, Interaction between morphine and morphine antagonists after systemic and intraventricular application, Eur. J. Pharmacol. 12: 53–64PubMedCrossRefGoogle Scholar
  7. Andrews, H. L., 1943a, The effects of opiates on the pain thresholds in post-addicts, J. Clin. Invest. 22: 511–516.PubMedCrossRefGoogle Scholar
  8. Andrews, H. L., 1943b, Skin resistance changes and measurements of pain threshold, J. Clin. Invest. 22: 517–520.PubMedCrossRefGoogle Scholar
  9. Andrews, H. L., and Workman, W., 1941, Pain threshold measurements in the dog, J. Pharmacol. Exp. Ther. 73: 99–103.Google Scholar
  10. Barnes, C. D., Fung, S. J. and Adams, W. L., 1979, Inhibitory effects of substantia nigra on impulse transmission from nociceptors, Pain 6: 207–215.PubMedCrossRefGoogle Scholar
  11. Basbaum, A. I., Marley, N. J. E., O’Keefe, J., and Clanton, C. H., 1977, Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions, Pain 3: 43–56.PubMedCrossRefGoogle Scholar
  12. Basbaum, A. I., Clanton, C. H., and Fields, H. I., 1978, Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems, J. Comp. Neurol. 178: 209–224.Google Scholar
  13. Beecher, H. K., 1956, Relationship of significance of wound to pain experienced, J. Amer. Med. Ass. 161: 1609–1613.CrossRefGoogle Scholar
  14. Beecher, H. K., 1957, The measurement of pain, Pharmacol. Rev. 9: 59–209.PubMedGoogle Scholar
  15. Beecher, H. K., 1968, Some complexities of the pain experience as seen in comparative studies of pathological and experimental pain, in The Addictive States: Research Publications of the Association for Research in Nervous and Mental Disease, Vol. 46 ( A. Wikler, Ed.), pp. 157–164. Williams & Wilkins, Baltimore, Maryland.Google Scholar
  16. Bennett, G. J., and Mayer, D. J., 1976, Effects of microinjected narcotic analgesics into the periaqueductal gray (PAG) on the response of rat spinal cord dorsal horn inter-neurons, Soc. Neurosci. Abstr. 2: 928.Google Scholar
  17. Berlin, L., Guthrie, T. C., Goodell, H., and Wolff, H. G., 1954, Studies on central excitatory state; factors responsible for variability of motor response to cutaneous stimulation in human subjects with isolated spinal cords, Arch Neurol. Psychiat (Chicago) 72: 764–779.Google Scholar
  18. Black, W. C., and Grosz, H. J., 1974, Propranolol antagonism of morphine-influenced behavior, Brain Res. 65: 362–367.PubMedCrossRefGoogle Scholar
  19. Blume, W., 1927, Über die Wirkung des Morphins auf das Rückenmark der dekapitierten Katze, Arch. Exper. Path. Pharmakol. 119: 24–30.CrossRefGoogle Scholar
  20. Brodai, A., Taber, E., and Walberg, F., 1960a, The raphe nuclei of the brain stem in the cat. II. Efferent connections, J. Comp. Neurol. 114: 239–259.CrossRefGoogle Scholar
  21. Brodai, A., Walberg, G., and Taber, E., 1960b, The raphe nuclei of the brain stem in the cat. III. Afferent connections, J. Comp. Neurol. 114: 261–281.CrossRefGoogle Scholar
  22. Burgess, P. R., and Perl, E. R., 1967, Myelinated afferent fibres responding specifically to noxious stimulation of the skin, J. Physiol. 190: 541–562.PubMedGoogle Scholar
  23. Buxbaum, D. M., and Pamplin, W., 1975, Effects of morphine on single unit activity of neurons in the nucleus raphe dorsalis, The Pharmacologist 17: 187.Google Scholar
  24. Buxbaum, D. M., Yarbrough, G. G., and Carter, M. E., 1970, Dose-dependent behavioral and analgesic effects produced by microinjections of morphine sulfate into the anterior thalamic nuclei, The Pharmacologist 12: 211.Google Scholar
  25. Calvillo, O., Henry, J. L., and Neuman, R. S., 1974, Effects of morphine and naloxone on dorsal horn neurons in the cat, Canad. J. Physiol. Pharmacol. 52: 1207–1211.CrossRefGoogle Scholar
  26. Casey, K. L., 1969, Somatic stimuli, spinal pathways, and size of cutaneous fibers influenc- ing unit activity in the medial medulary reticular formation, Exp. Neurol. 25: 35–56.PubMedCrossRefGoogle Scholar
  27. Casey, K. L., and Melzack, R., 1967, Neural mechanisms of pain: A conceptual model, in New Concepts in Pain and Its Clinical Management ( E. L. Way, Ed.), pp. 13–31. F. A. Davis Company, Philadelphia, Pennsylvania.Google Scholar
  28. Chapman, W. P., Rose, A. S., and Solomon, H. C., 1948, Measurements of heat stimulus producing motor withdrawal reaction in patients following frontal lobotomy, in “The Frontal Lobes: Research Publication of the Association for Research in Nervous and Mental Disease, Vol. 27 ( J. F. Fulton, C. D. Aring, and S. B. Wortis, Eds.), pp. 754–768. Williams & Wilkins, Baltimore, Maryland.Google Scholar
  29. Chorazyna, H., 1962, Some properties of conditioned inhibition, Acta Biol. Exp. 22:5. Clutton-Brock, J., 1961, Pain and the barbiturates, Anaesthesia 16: 80–88.Google Scholar
  30. Cook, L., and Bonnycastle, D. D., 1953, An examination of some spinal and ganglionic actions of analgetic materials, J. Pharmacol. Exp. Ther. 109: 35–44.PubMedGoogle Scholar
  31. Crosby, E. C., Humphrey, T., and Lauer, E. W., 1962, Correlative Anatomy of the Nervous System, p. 338. Macmillan, New York.Google Scholar
  32. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing eurons in the central nervous system. I. Demonstration of monoamines in the cell odies of brain stem neurons, Acta Physiol. Scand. 62 (Suppl. 232): 1–78.Google Scholar
  33. Dahlström, A., and Fuxe, K., 1965, Evidence for the existence of monoamine neurons in he central nervous system. II. Experimentally induced changes in the intraneuronalGoogle Scholar
  34. amine levels of bulbospinal neuron systems, Acta Physiol. Scand. 64 (Suppl. 247):1–85. D’Amour, F. E., and Smith, D. L., 1941, A method for determining loss of pain sensation, . Pharmacol. Exp. Ther. 72:74–79.Google Scholar
  35. DeBodo, R. E., and Brooks, C. McC., 1937, The effects of morphine on blood sugar and eflex activity in the chronic spinal cat, J. Pharmacol. Exp. Ther. 61: 82–88.Google Scholar
  36. Denton, J. E., and Beecher, H. K., 1949, New analgesics. I. Methods in the clinical evalua-ion of new analgesics, J. Amer. Med. Ass. 141: 1051–1057.CrossRefGoogle Scholar
  37. Duggan, A. W., and Griersmith, B. T., 1979, Inhibition of the spinal transmission of ociceptive information by supraspinal stimulation in the cat, Pain 6:149–161. Dundee, J. W., 1960, Alterations in response to somatic pain associated with anaesthesia.Google Scholar
  38. II. The effect of thiopentone and pentobarbitone, Brit. J. Anaesthesia 32:407–414. Dynes, J. B., and Poppen, J. L., 1949, Lobotomy for intractable pain, J. Amer. Med. Ass. 140: 15–19.Google Scholar
  39. Elithorn, A., Piercy, M. F., and Crosskey, M. A., 1955, Prefrontal leucotomy and the anticipation of pain, J. Neurol. Neurosurg. Psychiat. 18: 34–43.PubMedCrossRefGoogle Scholar
  40. Estes, W. M., and Skinner, B. F., 1941, Some quantitative properties of anxiety, J. Exper. Psychol. 29: 390–400.CrossRefGoogle Scholar
  41. Foltz, E. L., and White, L. E., 1966, Rostral cingulumotomy and pain “relief,” in Pain: Henry Ford Hospital International Symposium (R. S. Knighton and P. R. Dumke, Eds.), pp. 469–491. Little, Brown and Co., Boston, Massachusetts.Google Scholar
  42. Foster, R. S., Jenden, D. J., and Lomax, P., 1967, A comparison of the pharmacologic ffects of morphine and N-methyl morphine, J. Pharmacol. Exp. Ther. 157: 185–195.PubMedGoogle Scholar
  43. Fujita, S., Yasuhara, M., and Ogiu, K., 1953, Studies on sites of action of analgesics. I. The ffect of analgesics on afferent pathways of several nerves, Jap. J. Pharmacol. 3: 27–38.PubMedCrossRefGoogle Scholar
  44. Fujita, S., Yasuhara, M., Tamamoto, S., and Ogiu, K., 1954, Studies on the sites of action f analgesics. 2. The effect of analgesics on afferent pathways of pain, Jap. J. Phar-macol. 4: 41–51.CrossRefGoogle Scholar
  45. Grossman, S. P., 1967, A Textbook of Physiological Psychology, pp. 518–524. John Wiley & Sons, New York.Google Scholar
  46. Guilbaud, G., Besson, J. M., Oliveras, J. L., and Liebeskind, J. C., 1973, Suppression by LSD of the inhibitory effect exerted by dorsal raphe stimulation on certain spinal cord interneurons in the cat, Brain Res. 61: 417–422.PubMedCrossRefGoogle Scholar
  47. Haigler, H. J., 1976, Morphine: Ability to block neuronal activity evoked by a nociceptive stimulus, Life Sci. 19: 841–858.PubMedCrossRefGoogle Scholar
  48. Haigler, H. J., and Mittleman, R. S., 1978, Analgesia produced by direct injection of orphine into the mesencephalic reticular formation, Brain Res. Bull. 3: 655–662.PubMedCrossRefGoogle Scholar
  49. Hamilton, F. E., and Hayes, G. J., 1949, Prefrontal lobotomy in the management of intract-ble pain, Arch. Surg. 58: 731–738.CrossRefGoogle Scholar
  50. Hardy, J. D., Wolff, H. G., and Goodell, H., 1952, Pain Sensations and Reactions, Williams & Wilkins, Baltimore, Maryland.Google Scholar
  51. Henry, J. L., 1975, Effects of morphine and meperidine on neurones in cat midbrain, Fed. Proc. 34: 757.Google Scholar
  52. Herr, F., Nyiri, M., and Venulet, J., 1952, Studies on the mode of analgesic action of morphine and morphine derivatives, Acta Physiol. Acad. Scient. Hungaricae 3: 199–208.Google Scholar
  53. Herz, A., and Teschemacher, H. J., 1971, Activities and sites of antinociceptive action of morphine-like analgesic substances and kinetics of distribution following intravenous, intracerebral intraventricular application, Adv. Drug Res. 6: 79–118.Google Scholar
  54. Herz, A., Albus, K., Metys, J., Schubert, P., and Teschemacher, H. J., 1970, Onthe central sites for the antinociceptive action of morphine and fentanyl, Neuropharmacol. 9: 539–551CrossRefGoogle Scholar
  55. Hess, W. R., 1954, Das Zwischenirn: Syndrome, Lokalisationen, Funktionen (2nd, expanded ed.), pp. 102–103. Benno Schwabe Verlag, Basel, Switzerland.Google Scholar
  56. Hess, W. R., 1969, Hypothalamus and Thalamus: Experimental Documentation (2nd, enlarged ed.), pp. 66–67. Georg Thieme Verlag, Stuttgart, Germany.Google Scholar
  57. Hess, W. R., and Akert, K., 1955, Experimental data on role of hypothalamus in echanism of emotional behavior, Arch. Neurol. Psychiat. (Chicago) 73: 127–129.Google Scholar
  58. Hill, H. E., Flanary, H. G., Kornetsky, C. H., and Wikler, A., 1952a, Relationship of lectrically induced pain to the amperage and the wattage of shock stimuli, J. Clin. nvest 31: 464–472.CrossRefGoogle Scholar
  59. Hill, H. E., Kornetsky, C. H., Flanary, H. G., and Wikler, A., 1952b, Effects of anxiety and morphine on discrimination of intensities of painful stimuli, J. Clin. Invest. 31: 473–480.PubMedCrossRefGoogle Scholar
  60. Hill, H. E., Kornetsky, C. H., Flanary, H. G., and Wikler, A., 1952c, Studies on anxiety associated with anticipation of pain. I. Effects of morphine, Arch. Neurol. Psychiat. (Chicago) 67: 612–619.Google Scholar
  61. Hill, H. E., Belleville, R. E., and Wikler, A., 1954, Reduction of pain-conditioned anxiety by analgesic doses of morphine in rats, Proc. Soc. Exper. Biol. & Med. (N.Y.) 86: 881–884Google Scholar
  62. Hill, H. E., Belleville, R. E., and Wikler, A., 1955, Studies on anxiety associated with anticipation of pain. II. Comparative effects of pentobarbital and morphine, Arch. Neural. Psychiat. (Chicago) 73: 602–608.Google Scholar
  63. Hill, H. E., Belleville, R. E., and Wikler, A., 1957a, Motivational determinants in the modification of behavior by morphine and pentobarbital, Arch. Neurol. Psychiat. (Chicago) 77: 28–35.Google Scholar
  64. Hill, H. E., Pescor, F. T., Belleville, R. E., and Wikler, A., 1957b, Use of differential bar-pressing rates of rats for screening analgesic drugs. I. Techniques and effects of morphine, J. Pharmacol. Exp. Ther. 120: 388–397.PubMedGoogle Scholar
  65. Hill, H. E., Haertzen, C. A., Wolbach, A. B., and Miner, E. J., 1963, The Addiction Research Center Inventory: Standardization of scales which evaluate subjective effects of morphine, amphetamine, pentobarbital, alcohol, LSD-25, pyrahexyl and chlorpromazine, Psychopharmacologia 4: 167–183.Google Scholar
  66. Hill, H. E., Belleville, R. E., Pescor, F. T., and Wikler, A., 1966, Comparative effects of methadone, meperidine and morphine on conditioned suppression, Arch. Int. Pharmacodyn. Thér. 163: 341–352.Google Scholar
  67. Hill, H. E., Bell, E. C., and Wikler, A., 1967, Reduction of conditioned suppression: ctions of morphine compared with those of amphetamine, pentobarbital, nalorphine, cocaine, LSD-25 and chlorpromazine, Arch. Int. Pharmacodyn. Thér. 165: 212–226PubMedGoogle Scholar
  68. Hosobuchi, Y., Adams, J. E., and Linchiz, R., 1977, Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone, Science 197: 183–185PubMedCrossRefGoogle Scholar
  69. Houde, R. W., and Wikler, A., 1951, Delineation of the skin-twitch response in dogs and the effects thereon of morphine, thiopental and mephenesin, J. Pharmacol. Exp. Ther. 103: 236–242.PubMedGoogle Scholar
  70. Hunsperger, R. W., 1956, Affektreaktionen auf elektrische Reizung im Hirnstamm der Katze, Heiv. Physiol. Acta 14: 70–92.Google Scholar
  71. Irwin, S., Houde, R. W., Bennet, D. R., Hendershot, L. C., and Seevers, M. H., 1951, The effects of morphine, methadone and meperidine on some reflex responses of spinal animals to nociceptive stimulation, J. Pharmacol. Exp. Ther. 101: 132–143.PubMedGoogle Scholar
  72. Iwata, N., and Sakai, Y., 1971, Effects of fentanyl upon spinal interneurons activated by A-delta afferent fibers of the cutaneous nerve of the cat, Jap. J. Pharmacol. 21: 413–416.PubMedCrossRefGoogle Scholar
  73. Jacquet, Y., and Lajtha, A., 1973, Morphine action at central nervous system sites in rat: Analgesia or hyperalgesia depending on site and dose, Science 182: 490–492.PubMedCrossRefGoogle Scholar
  74. Jacquet, Y. F., and Lajtha, A., 1974, Paradoxical effects after microinjection of morphine in the periaqueductal gray matter of rats, Science 185: 1055–1057.PubMedCrossRefGoogle Scholar
  75. Jones, B. E., and Ayres, J. J. B 1968, Effects of morphine on differentially conditioned electrodermal responses, in The Addictive States: Research Publications of the Association for Research in Nervous and Mental Disease,Vol. 46 (A. Wikler, Ed.), pp. 166–175. Williams & Wilkins, Baltimore, Maryland.Google Scholar
  76. Jones, B. E., Ayres, J. J. B., Flanary, H. G., and Clements, T. H., 1965, Effects of morphine and pentobarbital on conditioned electrodermal responses and basal conductance in man, Psychopharmacologia 7: 159–174.Google Scholar
  77. Jones, C. M., and Chapman, W. P., 1944, Comparative study of analgesic effect of orphine sulfate and monoacetyl-morphine, Arch. Int. Med. 73: 322–328.CrossRefGoogle Scholar
  78. Jurna, I., Grossmann, W., and Theres, C., 1973, Inhibition by morphine of repetitive ctivation of cat spinal motoneurones, Neuropharmacol. 12: 983–993.CrossRefGoogle Scholar
  79. Kast, E. C., and Collins, V. J., 1964, Lysergic acid diethylamide as an analgesic agent, Anesthes. Analg. 43: 285–291.Google Scholar
  80. Keats, A. S., and Telford, J., 1956, Nalorphine, a potent analgesic in man, J. Pharmacol. Exp. Ther. 117: 190–196.PubMedGoogle Scholar
  81. Kelleher, R. T., and Morse, W. H., 1964, Escape behavior and punished behavior, Fed. Proc. 23: 808–817.PubMedGoogle Scholar
  82. Kelly, D. D., and Glusman, M., 1968, Aversive thresholds following midbrain lesions, J. Comp. Physiol. Psychol. 66: 25–34.PubMedCrossRefGoogle Scholar
  83. King, H. E., Clausen, H., and Scarff, J. E., 1950, Cutaneous thresholds for pain before and after unilateral frontal lobotomy: A preliminary report, J. Nerv. Ment. Dis. 112: 93–96.PubMedGoogle Scholar
  84. Kitahata, L. M., Kosaka, Y., Taub, A., and Collins, W. F., 1973, Lamina-specific suppression of dorsal horn unit activity by morphine sulphate, Fed. Proc. 32 (1): 693.Google Scholar
  85. Kitahata, L. M., Kosaka, Y., Taub, A., Bonnikos, K., and Hoffert, M., 1974, Lamina specific suppression of dorsal-horn unit activity by morphine, Anesthesiology 41: 39–48.PubMedCrossRefGoogle Scholar
  86. Koll, W., Haase, J., Schutz, R. M., and Mühlberg, B., 1961, Reflexentladungen der tiefspinalen Katze durch afferente Impulse aus hochschwelligen nociceptiven A-Fasern (post delta-Fasern) und aus nociceptiven C-Fasern cutaner Nerven, Pflügers Archiv. 272: 270–289.CrossRefGoogle Scholar
  87. Koll, W., Haase, J., Block, G., and Mühlberg, B., 1963, The predilective action of small doses of morphine on nociceptive spinal reflexes of low spinal cats, Int. J. Neuropharmacol. 2: 57–65.Google Scholar
  88. Kornetsky, C., 1954, Effects of anxiety and morphine on the anticipation and perception of painful radiant thermal stimuli, J. Comp. Physiol. 47: 130–132.Google Scholar
  89. Koskoff, Y. D., Dennis, W., Lazovik, D., and Wheeler, E. T., 1948, The physiological effects of frontal lobotomy performed for the alleviation of pain, in The Frontal Lobes: Research Publications of the Association for Research in Nervous and Mental Disease, Vol. 27 ( J. F. Fulton, C. D. Aring, and S. B. Wortis, Eds.), pp. 723–753. Williams & Wilkins, Baltimore, Maryland.Google Scholar
  90. Krivoy, W., Kroeger, D., and Zimmerman, E., 1973, Actions of morphine on the segmental reflex of the decerebrate-spinal cat, Brit. J. Pharmacol. 47: 457–464.Google Scholar
  91. Kruglov, N. A., 1964, Effect of the morphine-group analgesics on the central inhibitory mechanisms, Int. J. Neuropharmacol. 3: 197–203.PubMedCrossRefGoogle Scholar
  92. Kuhar, M. J., Pert, C. B., and Snyder, S. H., 1973, Regional distribution of opiate receptor binding in monkey and human brain, Nature (London) 245: 447–450.Google Scholar
  93. Lasagna, L., and Beecher, H. K., 1954, The analgesic effectiveness of nalorphine and nalorphine-morphine combinations in man, J. Pharmacol. Exp. Ther. 112: 356–363.PubMedGoogle Scholar
  94. Lasagna, L., von Felsinger, J. M., and Beecher, H. K., 1955, Drug induced chanes in man. I. Observations on healthy subjects, chronically ill patients and “post-addicts.” J. Amer. Med. Ass. 157: 1006–1020.Google Scholar
  95. Lauener, H., 1963, Conditioned suppression in rats and the effect of pharmacological agents thereon, Psychopharmacologia 4: 311–325.PubMedCrossRefGoogle Scholar
  96. LeBars, D., Menetrey, D., Conseiller, C., and Besson, J. M., 1975, Depressive effect of morphine upon lamina V cells activities in the dorsal horn of the spinal cat, Brain Res. 98: 261–277.CrossRefGoogle Scholar
  97. LeBars, D., Menetrey, D., and Besson, J. M., 1976, Effects of morphine upon the lamina V type cells activities in the decerebrate cat, Brain Res. 113: 293–310.PubMedCrossRefGoogle Scholar
  98. Lee, J. R., and Fennessy, M. R., 1970, The relationship between morphine analgesia and the levels of biogenic amines in the mouse brain, Eur. J. Pharmacol. 12: 65–70.PubMedCrossRefGoogle Scholar
  99. Liebeskind, J. C., Guilbaud, G., Besson, J. M., and Oliveras, J. L., 1973, Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: Behavioral observations and inhibitory effects on spinal cord interneurons, Brain Res. 50: 441–446.PubMedCrossRefGoogle Scholar
  100. Liebman, J. M., Mayer, D. J., and Liebeskind, J. C., 1970, Mesencephalic central gray lesions and fear-motivated behavior in rats, Brain Res. 23: 353–370.PubMedCrossRefGoogle Scholar
  101. Luckhardt, A. B., and Johnson, C. A., 1928, Studies on the kneejerk. IV. The effect of moderate doses of morphine sulfate on the kneejerk of the cat, Am. J. Physiol. 83: 653–657Google Scholar
  102. Malmo, R. B., and Shagass, C., 1950, Behavioral and physiologic changes under stress fter operation on the frontal lobes, Arch. Neurol. Psychiat. (Chicago) 63: 1–12.Google Scholar
  103. Martin, W. R., and Eades, C. G., 1964, A comparison between acute and chronic physical ependence in the chronic spinal dog, J. Pharmacol. Exp. Ther. 146: 385–394.PubMedGoogle Scholar
  104. Mayer, D. J., and Hayes, R. L., 1975, Stimulation-produced analgesia: Development of olerance and cross-tolerance to morphine, Science 188: 941–943.PubMedCrossRefGoogle Scholar
  105. Mayer, D. J., and Liebeskind, J. C., 1974, Pain reduction by focal electrical stimulation of the brain: An anatomical and behavioral analysis, Brain Res. 68: 73–93.PubMedCrossRefGoogle Scholar
  106. Mayer, D. J., and Price, D. D., 1976, Central nervous system mechanisms of analgesia, Pain 2: 379–404.PubMedCrossRefGoogle Scholar
  107. Mayer, D., Akil, H., and Liebeskind, J., 1973, Pain reduction: A comparison of stimulation-produced and narcotic analgesia, Fed. Proc. 32 (1): 693.Google Scholar
  108. Mayer, D. J., Wolfle, T. L., Akil, H., Carder, B., and Liebeskind, J. C., 1971, Analgesia from electrical stimulation in the brainstem of the rat, Science 174: 1351–1354.PubMedCrossRefGoogle Scholar
  109. Maxwell, D. R., Palmer, H. T., and Ryall, R. W., 1961, A comparison of the analgesic and some other central properties of methotrimeprazine and morphine, Arch. Int. Pharmacodyn. Thér. 132: 60–73.PubMedGoogle Scholar
  110. Melzack, R., and Wall, P. D., 1965, Pain mechanisms: A new theory, Science 150:971–978. Morris, M. D., and Gebhart, G. F., 1978, The effect of morphine on fear extinction in rats, Psychopharmacology 57: 267–271.Google Scholar
  111. Nashold, B. S., Wilson, W. P., and Slaughter, D. G., 1969, Sensations evoked by stimulation in the midbrain of man, J. Neurosurg. 30: 14–24.PubMedCrossRefGoogle Scholar
  112. Oleson, T. D., and Leibeskind, J. C., 1975, Relationship of neural activity in the raphe nuclei of the rat to brain stimulation-produced analgesia, The Physiologist 18: 338.Google Scholar
  113. Oliveras, J. L., Besson, J. M., Guilbaud, G., and Liebeskind, J. C., 1974, Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat, Exp. Brain Res. 20: 32–44.PubMedCrossRefGoogle Scholar
  114. Oliveras, J. L., Redjemi, F., Guilbaud, G., and Besson, J. M., 1975, Analgesia induced by electrical stimulation of the inferior centralis of the raphe in the cat. Pain 1: 139–145PubMedCrossRefGoogle Scholar
  115. Pavlov, I. P., 1927, Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex (G. V. Anrep, Trans. and Ed.), Oxford University Press, London. Reprinted by Dover Publications, Inc., New York, 1960, pp. 29–32.Google Scholar
  116. Pert, C. B., and Snyder, S. H., 1973, Opiate receptor, demonstration in nervous tissue, Science 179: 1011–1014.Google Scholar
  117. Pert, A., and Yaksh, T., 1974, Sites of morphine induced analgesia in the primate brain: Relation to pain pathways, Brain Res. 80: 135–140.PubMedCrossRefGoogle Scholar
  118. Pomeranz, B., 1973, Specific nociceptive fibers projecting from spinal cord neurons to the brain: A possible pathway for pain, Brain Res. 50: 447–451.PubMedCrossRefGoogle Scholar
  119. Proudfit, H. K., and Anderson, E. G., 1973, Influence of serotonin antagonists on bulbospinal systems, Brain Res. 61: 331–341.PubMedCrossRefGoogle Scholar
  120. Proudfit, H. K., and Anderson, E. G., 1974a, Blockade of morphine analgesia by destruc-tion of a bulbo-spinal serotonergic pathway, The Pharmacologist 16: 203.Google Scholar
  121. Proudfit, H. K., and Anderson, E. G., 1974b, New long latency bulbospinal evoked poten-tials blocked by serotonin antagonists, Brain Res. 65: 542–546.PubMedCrossRefGoogle Scholar
  122. Proudfit, H. K., and Anderson, E. G., 1975, Morphine analgesia: Blockade by raphe magnus lesions, Brain Res. 98: 612–618.PubMedCrossRefGoogle Scholar
  123. Rexed, B 1952, The cytoarchitectonic organisation of the spinal cord of the cat, J. Cell. Comp. Neurol. 96:415–495.Google Scholar
  124. Reynolds, D. V., 1969, Surgery in the rat during electrical analgesia induced by focal brain stimulation, Science 164: 444–445.PubMedCrossRefGoogle Scholar
  125. Richardson, D., and Akil, H., 1977a, Pain reduction by electrical brain stimulation in man. Part I. Acute administration in periaqueductal and periventricular sites, J. Neurosurg. 47: 178–183.PubMedCrossRefGoogle Scholar
  126. Richardson, D. E., and Akil, H., 1977b, Pain reduction by electrical brain stimulation in man. Part 2. Chronic self-administration in the periventricular gray matter, J. Neurosurg. 47: 184–194.PubMedCrossRefGoogle Scholar
  127. Samanin, R., Gumulka, W., and Valzelli, L., 1970, Reduced effect of morphine in midbrain raphe lesioned rats, Eur. J. Pharmacol. 10: 339–343.PubMedCrossRefGoogle Scholar
  128. Sasa, M., Munekiyo, K., Osumi, Y., and Takaori, S., 1977, Attenuation of morphine analgesia in rats with lesions of the locus coeruleus and dorsal raphe nucleus, Eur. J. Pharmacol. 42: 53–62.PubMedCrossRefGoogle Scholar
  129. Satoh, M., and Takagi, H., 1971, Enhancement by morphine of the central descending nhibitory influence on spinal sensory transmission, Eur. J. Pharmacol. 14: 60–65.CrossRefGoogle Scholar
  130. Satoh, M., Zieglgänsberger, W., and Herz, A., 1976, Actions of opiates upon single unittivity in the cortex of naive and tolerant rats, Brain Res. 115: 99–110.PubMedCrossRefGoogle Scholar
  131. Schaumann, 0., 1954, Analgetika und protektives System, Dtsch. med. Wchnschr. 79: 1571–1573.CrossRefGoogle Scholar
  132. Schmidek, H. H., Fohanno, D., Ervin, F. R., and Sweet, W. H., 1971, Pain threshold aterations by brain stimulation in the monkey, J. Neurosurg. 35: 717–722.Google Scholar
  133. Schneider, J A., 1954, Reserpine antagonism of morphine analgesia in mice, Proc. Soc. .Biol.Exp.Med(N.Y.) 87:614–615.Google Scholar
  134. Sharpe, L. J., Garnett, J., and Cicero, T., 1974, Analgesia and hyper-reactivity produced by intracranial microinjections of morphine into the periaqueductal grey matter of the cat, Behay. Biol. 11: 303–313.CrossRefGoogle Scholar
  135. Shiomi, H., and Takagi, H., 1974, Morphine analgesia and the bulbospinal noradrenergic system: Increase in the concentration of normetanephrine in the spinal cord of the rat caused by analgesics, Brit. J. Pharmacol. 52: 519–526.Google Scholar
  136. Sinclair, J. G., 1973, Morphine and meperidine on bulbospinal inhibition of the monosynaptic reflex, Eur. J. Pharmacol. 21: 111–114.PubMedCrossRefGoogle Scholar
  137. Skultety, F. M., 1958, The behavioral effects of destructive lesions of the periaqueductal gray matter in adult cats, J. Comp. Neurol. 110: 337–365.PubMedCrossRefGoogle Scholar
  138. Skultety, F. M., 1963, Stimulation of periaqueductal gray and hypothalamus, Arch. Neurol. (Chicago) 8: 608–620.CrossRefGoogle Scholar
  139. Stephens, J. H., and Gantt, W. H., 1956, The differential effect of morphine on cardiac and motor conditional reflexes—Schizokinesis, Johns Hopkins Hosp. Bull. 98: 245–254.Google Scholar
  140. Taber, E., Brodal, A., and Walberg, F., 1960, The raphe nuclei of the brain stem in the cat. I. Normal topography and cytoarchitecture and general discussion, J. Comp. Neurol. 114: 161–182.PubMedCrossRefGoogle Scholar
  141. Takagi, H., and Satoh, M., 1978, Neurological models for the study of narcotics: Bradykinin-induced nociceptive responses and site of anti-nociceptive action of morphine, in Factors Affecting the Action of Narcotics ( M. L. Adler, L. Manara, and R. Samanin, Eds.), pp. 39–62. Raven Press, New York.Google Scholar
  142. Takagi, H., Matsumura, M., Yanai, A., and Ogiu, K., 1955, The effect of analgesics on the spinal reflex activity of the cat, Jap. J. Pharmacol. 4: 176–187.PubMedCrossRefGoogle Scholar
  143. Takagi, H., Doi, T., and Kawasaki, K., 1975, Effects of morphine, /-dopa and tetrebenazine on the lamina V cells of spinal dorsal horn, Life Sci. 17: 67–72.PubMedCrossRefGoogle Scholar
  144. Takagi, H., Doi, T., and Akaike, A., 1976, Microinjection of morphine into the medial part of the bulbar reticular formation in rabbit and rat: Inhibitory effect on lamina V cells of spinal dorsal horn and behavioral analgesia, in Opiates and Endogenous Opioid Peptides ( H. W. Kosterlitz, Ed.), pp. 191–198. Elsevier/North Holland Biomedical Press, Amsterdam, The Netherlands.Google Scholar
  145. Takagi, H., Satoh, M., Akaike, A., Shibata, T., and Kuraishi, Y., 1977, The nucleus reticularis gigantocellularis of the medulla oblongata is a highly sensitive site in the production of morphine analgesia in the rat, Eur. J. Pharmacol. 45: 91–92.Google Scholar
  146. Tenen, S. S., 1968, Antagonism of the analgesic effect of morphine and other drugs by p-chloropheylalanine, a serotonin depletor, Psychopharmacologia 2: 278–285.CrossRefGoogle Scholar
  147. Teschemacher, H. J., Schubert, P., and Herz, A., 1973, Autoradiographic studies concerning the supraspinal site of the antinociceptive action of morphine when inhibiting the hindleg flexor reflex in rabbits, Neuropharmacol. 12: 123–131.CrossRefGoogle Scholar
  148. Tsou, K., and Jang, C. S., 1964, Studies on the site of analgesic action of morphine by intracerebral micro-injection, Scientia Sinica 13: 1099–1109.PubMedGoogle Scholar
  149. Ungerstedt, U., 1971, Sterotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand. Suppl. 367: 1–48.Google Scholar
  150. Vigouret, J., Teschemacher, H., Albus, K., and Herz, A., 1973, Differentiation between spinal and supraspinal sites of action of morphine when inhibiting the hindleg withdrawal reflex, Neuropharmacol. 12: 111–121.CrossRefGoogle Scholar
  151. Vogt, M., 1974, The effect of lowering of the 5-hydroxytryptamine content of the rat spinal cord on analgesia produced by morphine. J. Physiol. (London) 236: 483–498.Google Scholar
  152. Watts, J. W., and Freeman, W., 1948, Frontal lobotomy in the treatment of intractable pain, in The Frontal Lobes: Research Publications of the Association for Research in Nervous and Mental Disease, Vol. 27 ( J. F. Fulton, C. D. Aring, and S. B. Wortis, Eds.), pp. 715–722. Williams & Wilkins, Baltimore, Maryland.Google Scholar
  153. Wikler, A., 1944, Studies on the action of morphine on central nervous system of cat J. Pharmacol. Exp. Ther. 80:176–187.Google Scholar
  154. Wikler, A., 1945, Effects of morphine, nembutal, ether and eserine on two-neuron and mltineuron reflexes in the cat, Proc. Soc. Exper. Biol. & Med. (N.Y.) 58: 193–196.Google Scholar
  155. Wikler, A., 1950, Sites and mechanisms of action of morphine and related drugs in the central nervous system, Pharmacol. Rev. 2: 435–506.Google Scholar
  156. Wikler, A., 1952, A psychodynamic study of a patient during experimental self-regulated re-addiction to morphine, Psychiat. Quart. 26: 270–293.PubMedCrossRefGoogle Scholar
  157. Wikler, A., 1957, The Relation of Psychiatry to Pharmacology, Williams & Wilkins, Baltimore, Maryland.Google Scholar
  158. Wikler, A., 1958, Mechanisms of Action of Opiates and Opiate Antagonists, Public Health Monograph No. 52, Department of Health, Education and Welfare, Public Health Service Publication No. 589. p. 20. U.S. Government Printing Office, Washington, D.C.Google Scholar
  159. Wikler, A., and Frank, K., 1948, Hindlimb reflexes of chronic spinal dogs during addiction to morphine and methadone, J. Pharmacol. Exp. Ther. 94: 382–440.PubMedGoogle Scholar
  160. Wikler, A., and Rayport, M., 1954, Lower limb reflexes of a chronic “spinal” man in cycles of morphine and methadone addiction, Arch. Neurol. Psychiat. (Chicago) 71: 160–170.Google Scholar
  161. Wolff, H. G., Hardy, J. D., and Goodell, H., 1940, Studies on pain: Measurement of the effects of morphine, codeine and other opiates on the pain threshold and an analysis of their relation to the pain experience, J. Clin. Invest. 19: 659–6680.Google Scholar
  162. Woods, L. A., 1956, The pharmacology of nalorphine (N-allylnormorphine) Pharmacol. Rev. 8:175–198.Google Scholar
  163. Yaksh, T. L., and Rudy, T. A., 1976, Analgesia mediated by a direct spinal action of narcotics Science 192:1357–1358.Google Scholar
  164. Yaksh, T. L., Yeung, J. C., and Rudy, T. A., 1976, Systematic examination in the rat of brain sites sensitive to the direct application of morphine: Observation of differential effects within the periaqueductal gray, Brain Res. 114: 83–103.PubMedCrossRefGoogle Scholar
  165. Zieglgänsberger, W., and Bayerl, H., 1976, The mechanism of inhibition of neuronal activity by opiates in the spinal cord of cat, Brain Res. 115: 111–128.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Abraham Wikler
    • 1
  1. 1.Department of PsychiatryUniversity of Kentucky Medical CenterLexingtonUSA

Personalised recommendations