Opioid Receptors and Endogenous Opioid Peptides

  • Abraham Wikler


According to Ariëns et al. (1964b), the concept of receptors was first proposed by J. N. Langley in 1905 to account for the actions of nicotine and curare at the myoneural junction, and by P. Ehrlich in 1906 to account for specific interactions between antigens and antibodies and for the selectivity of dyes for certain components of living cells. On the basis of his research, Ehrlich (1913) concluded that “If the law is true in chemistry that ‘corpora non agunt nisi liquida,’ then for chemotherapy the principle is true that ‘corpora non agunt nisi fixata”’ (substances do not act unless they are fixated). In modern drug-receptor interaction theory, reversible “fixation” of the drug to the receptor is held to produce the pharmacological effect, and drug-receptor interactions are viewed as analogous to substrate-enzyme interactions (Michaelis & Menten, 1913). In this view, subject to some qualifications expressed by Ariëns et al. (1956), the receptor concentration is regarded as if it were an enzyme concentration, the drug concentration as if it were a substrate concentration, and the pharmacological effect of the drug-receptor combination as if it were the initial reaction velocity of the enzyme-catalyzed substrate change. On the basis of these and some other assumptions, the dose-effect relationships of agonists, partial agonists, and antagonists, as well as their intrinsic activities (efficacies) and affinities, have been calculated. The term agonist implies that a given pharmacological effect of a drug increases with its dose (or its concentration) up to a maximum.


Opioid Receptor Trigeminal Neuralgia Opioid Peptide Brief Psychiatric Rate Scale Opioid Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. E., 1976, Naloxone reversal of analgesia produced by brain stimulation in the human, Pain 2: 161–166.PubMedCrossRefGoogle Scholar
  2. Aghajanian, G. K., 1978, Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine, Nature (London) 276: 183–188.Google Scholar
  3. Akil, H., Mayer, D. J., and Liebeskind, J. C., 1972, Comparaison chez le rat entre l’analgésie induite par stimulation de la substance grise périaqueducale et l’analgésie morphinique, C. R. Acad. Sci. (Paris) 274: 3603–3605.Google Scholar
  4. Akil, H., Mayer, D. J., and Liebeskind, J. C., 1976, Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist, Science 191: 961–962.PubMedCrossRefGoogle Scholar
  5. Akil, H., Richardson, D. E., Hughes, J., and Barchas, J. S., 1978, Enkephalin-like material elevated in ventricular cerebrospinal fluid of patients after analgetic focal stimulation, Science 201:463–465.PubMedCrossRefGoogle Scholar
  6. Ariëns, E. J., van Rossum, J. M., and Simonis, A. M., 1956, A theoretical basis of molecular pharmacology. Part I. Interactions of one or two compounds with one receptor system, Arzneimittelforschung 6: 282–293.PubMedGoogle Scholar
  7. Ariëns, E. J., Simonis, A. M., and van Rossum, J. M., 1964a, Drug-receptor interaction: Interaction of one or more drugs with different receptor systems, in Molecular Pharmacology: The Mode of Action of Biologically Active Compounds, Vol. 1 ( E. J. Ariëns, Ed.), pp. 287–393. Academic Press, New York.Google Scholar
  8. Ariëns, E. J., Simonis, A. M., and van Rossum, J. M., 1964b, Drug-receptor interaction: Interaction of one or more drugs with one receptor system, in Molecular Pharmacology: The Mode of Action of Biologically Active Compounds, Vol. 1 ( E. J. Ariëns, Ed.), pp. 119–286. Academic Press, New York.Google Scholar
  9. Atweh, S. F., and Kuhar, M. J., 1977, Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla, Brain Res. 124: 53–67.PubMedCrossRefGoogle Scholar
  10. Bell, J. A., and Martin, W. R., 1977, The effect of the narcotic antagonists naloxone, naltrexone and nalorphine on spinal cord C-fiber reflexes evoked by electrical stimulation or radiant heat, Eur. J. Pharmacol. 42: 147–154.PubMedCrossRefGoogle Scholar
  11. Belluzzi, J. D., Grant, N., Garsky, V., Sarantakis, D., Wise, C. D., and Stein, L., 1976, Analgesia induced in vivo by central administration of enkephalin in rat, Nature (London) 260: 625–626.Google Scholar
  12. Bird, S. J., and Kuhar, M. J., 1977, Iontophoretic application of opiates to the locus coeruleus, Brain Res. 122: 523–533.PubMedCrossRefGoogle Scholar
  13. Bloom, F., Segal, D., Ling, N., and Guillemin, R., 1976, Endorphins: Profound behavioral effects in rats suggest new etiological factors in mental illness, Science 194: 630–632.PubMedCrossRefGoogle Scholar
  14. Cox, B. M., Opheim, K. E., Teschemacher, H., and Goldstein, A., 1975, A peptide-like substance from pituitary that acts like morphine. 2. Purification and properties. Life Sci. 16:1777–1782.PubMedCrossRefGoogle Scholar
  15. Cox, B. M., Goldstein, A., and Li, C. H., 1976, Opioid activity of a peptide, betalipotropin-(61–91), derived from beta-lipotropin, Proc. Natl. Acad. Sci. USA 73: 1821–1823.PubMedCrossRefGoogle Scholar
  16. Creese, I., Feinberg, A. P., and Snyder, S. H., 1976, Butyrophenone influences on the opiate receptor, Eur. J. Pharmacol. 36: 231–235.PubMedCrossRefGoogle Scholar
  17. Czlonkowski, A., Höllt, V., and Herz, A., 1978, Binding of opiates and endogenous opioid peptides to neuroleptic receptor sites in the corpus stratum, Life Sci. 22: 953–962.PubMedCrossRefGoogle Scholar
  18. Ehrlich, P., 1913, Chemotherapeutics: Scientific principles, methods and results, Lancet 185: 445–451.Google Scholar
  19. Frederickson, R. C. A., and Norris, F. H., 1976, Enkephalin-induced depression of single neurons in brain areas with opiate receptors-antagonism by naloxone, Science 194: 440–442.PubMedCrossRefGoogle Scholar
  20. Gero, A., 1971, Intimate study of drug action. III. Mechanisms of molecular drug action, in Drill’s Pharmacology in Medicine ( J. R. DiPalma, Ed.), pp. 67–98. McGraw-Hill Book Company, New York.Google Scholar
  21. Gilbert, P. E., and Martin, W. R., 1976, The effects of morphine-and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog, J. Pharmacol. Exp. Ther. 198: 66–82.PubMedGoogle Scholar
  22. Gold, M. S., Redmond, D. E., and Kleber, H. D., 1978a, Clonidine blocks acute opiate-withdrawal symptoms, Lancet 2: 599–6602.PubMedCrossRefGoogle Scholar
  23. Gold, M. S., Redmond, D. E., and Kleber, H. D., 1978b, Clonidine in opiate withdrawal, Lancet 1:929–930.Google Scholar
  24. Goldstein, A., 1973, The search for the opiate receptor, in Pharmacology and the Future of Man. Proc. 5th Congr. Pharmacology, San Francisco 1972, Vol. 1 ( J. Cochin, Ed.), pp. 140–159. Karger, Basel.Google Scholar
  25. Goldstein, A., and Cox, B. M., 1977, Opioid peptides (endorphins) in pituitary and brain, Psychoneuroendocrinology 2:11–16.Google Scholar
  26. Goldstein, A., and Hilgard, E. R., 1975, Failure of the opiate antagonist naloxone to modify hypnotic analgesia, Proc. Nat. Acad. Sci. USA 72: 2041–2043.PubMedCrossRefGoogle Scholar
  27. Goldstein, A., Lowney, K. E., and Pal, B. K., 1971, Stereospecific and non-specific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain, Proc. Nat. Acad. Sci. USA 68: 1742–1747.PubMedCrossRefGoogle Scholar
  28. Grevert P., and Goldstein, A., 1977a, Effects of naloxone on experimentally induced ischemic pain and on mood in human subjects, Proc. Natl. Acad. Sci. USA 74: 1291–1294.PubMedCrossRefGoogle Scholar
  29. Grevert, P., and Goldstein, A., 1977b, Some effects of naloxone on behavior in the mouse, Psychopharmacology 53:111–113.PubMedCrossRefGoogle Scholar
  30. Grevert, P., and Goldstein, A., 1978, Endorphins: Naloxone fails to alter experimental pain or mood in humans, Science 199: 1093–1095.PubMedCrossRefGoogle Scholar
  31. Guillemin, R., 1978, Peptides in the brain: The new endocrinology of the neuron, Science 202: 390–402.PubMedCrossRefGoogle Scholar
  32. Guillemin, R., Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., Vale, W., and Bloom, F., 1977, ß-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland, Science 197: 1367–1369.PubMedCrossRefGoogle Scholar
  33. Gunne, L. M., Lindstrom, L., and Terenius, L., 1977, Naloxone-induced reversal of schizophrenic hallucinations, J. Neural Transmission 40: 13–19.CrossRefGoogle Scholar
  34. Hosobuchi, T., Rossier, J., Bloom, F. E., and Guillemin, R., 1979, Stimulation of human periaqueductal gray for pain relief increases immunoreactive beta-endorphin in ventricular fluid, Science 203: 279–281.PubMedCrossRefGoogle Scholar
  35. Hughes, J., 1975, Isolation of an endogenous compound in the brain with pharmacological properties similar to morphine, Brain Res. 88: 295–308.PubMedCrossRefGoogle Scholar
  36. Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R., 1975a, Identification of two related pentapeptides from the brain with potent opiate agonist activity, Nature (London) 258: 577–579.CrossRefGoogle Scholar
  37. Hughes, J., Smith, T., Morgan, B., and Fothergill, L., 1975b, Purification and properties of enkephalin—The possible endogenous ligand for the morphine receptor, Life Sci. 16: 1753–1758.PubMedCrossRefGoogle Scholar
  38. Hutchison, M., Kosterlitz, H. W., Leslie, F. M., Waterfield, A. A., and Terenius, L., 1975, Assessment in the guinea-pig ileum and mouse vas deferens of benzomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey, Brit. J. Pharmacol. 55: 541–546.Google Scholar
  39. Jacob, J. J., Tremblay, E. C., and Colombel, M. C., 1974, Facilitation de réactions nocicep-tives par la naloxone chez la souris et chez le rat, Psychopharmacologia 37: 217–223.PubMedCrossRefGoogle Scholar
  40. Jacquet, Y. F., 1978, Opiate effects after adrenocorticotropin or beta-endorphin injection in the periaqueductal gray matter of rats, Science 201: 1032–1034.PubMedCrossRefGoogle Scholar
  41. Jacquet, Y. F., and Marks, N., 1976, The C-fragment of beta-lipotropin: An endogenous neuroleptic or antipsychotogen? Science 194: 632–634.PubMedCrossRefGoogle Scholar
  42. Jacquet, Y. F., Klee, W. A., Rice, K. C., Ijima, I., and Minamikawa, J., 1977, Stereospecific and nonstereospecific effects of (+)- and (-)-morphine: Evidence for a new class of receptors? Science 198: 842–845.PubMedCrossRefGoogle Scholar
  43. Janowsky, D. C., Segal, D. S., Abrams, A., Bloom, F., and Guillemin, R., 1977, Negative naloxone effects in schizophrenic patients, Psychopharmacology 53: 295–297.PubMedCrossRefGoogle Scholar
  44. Kline, N. S., Li, C. H., Lehmann, H. E., Lajtha, A., Laski, E., and Cooper, T., 1977, Beta-endorphin-induced changes in schizophrenic and depressed patients, Arch. Gen. Psychiat. 34: 1111–1113.PubMedCrossRefGoogle Scholar
  45. Kurland, A. A., McCabe, O. L., and Hanlon, T. E., 1977, The treatment of perceptual disturbances in schizophrenia with naloxone hydrochloride, Amer. J. Psychiat. 134: 1408–1410.Google Scholar
  46. Lehmann, H., Nair, V., and Kline, N. S., 1979, Beta-endorphin and naloxone in psychiatric patients: Clinical and biological effects, Amer. J. Psychiat. 136: 762–766.PubMedGoogle Scholar
  47. Lewis, R. V., Gerber, L. D., Stein, S., Stephen, R. L., Grosser, B. I., Velick, S. F., and Udenfriend, S., 1979, On ß„-leu5-endorphin and schizophrenia, Arch. Gen. Psychiat. 36: 237–239.PubMedCrossRefGoogle Scholar
  48. Li, C. H., 1964, Lipotropin, a new active peptide from pituitary glands, Nature (London), 201: 924.Google Scholar
  49. Li, C. H., and Chung, D., 1976, Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands, Proc. Natl. Acad. Sci. USA 73: 1145–1148.PubMedCrossRefGoogle Scholar
  50. Ling, N., Burgus, R., and Guillemin, R., 1976, Isolation, primary structure, and synthesis of alpha-endorphin and gamma-endorphin, two peptides of hypothalamichypophysial origin with morphinomimetic activity, Proc. Natl. Acad. Sci. USA 73: 3942–3946.PubMedCrossRefGoogle Scholar
  51. Loh, H. H., Tseng, L. F., Wei, E., and Li, C. H., 1976, /3-endorphin is a potent analgesic agent, Proc. Natl. Acad. Sci. USA 73: 2895–2898.PubMedCrossRefGoogle Scholar
  52. Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W., 1976, Multiple opiate receptors, in Opiates and Endogenous Opioid Peptides (H. W. Kosterlitz, Ed.), pp. 275–280. Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  53. Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W., 1977, Endogenous opioid peptides: Multiple agonists and receptors, Nature (London) 267: 495–499.Google Scholar
  54. Mains, R. E., Eipper, A. B., and Ling, N., 1977, Common precursor to corticotropins and endorphins, Proc. Nat. Acad. Sci. USA 74: 3014–3018.CrossRefGoogle Scholar
  55. Martin, W. R., 1967, Opioid antagonists, Pharmacol. Rev. 19: 463–521.PubMedGoogle Scholar
  56. Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E., and Gilbert, P. E., 1976, The effects of morphine-and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog, J. Pharmacol. Exp. Ther. 197: 517–532.PubMedGoogle Scholar
  57. Mayer, D. J., Price, D. D., and Rafü, A., 1977, Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone, Brain Res. 121: 368–372.PubMedCrossRefGoogle Scholar
  58. Meglio, M., Hosobuchi, Y., Loh, H. H., Adams, J. E., and Li, C. H., 1977, ß-endorphin: Behavioral and analgesic activity in cats, Proc. Natl. Acad. Sci. USA 74:774–776. Michaelis, L., and Menten, M., 1913, Kinetik der Invertinwirkung, Biochem. Ztschr. 49: 333–369.Google Scholar
  59. Palmour, R. M., Ervin, F. R., Wagemaker, H., and Cade, R., 1977, Characterization of a peptide derived from the serum of psychiatric patients, Abstr. Soc. Neu rosi. 7: 320 (cited in Lewis et ai., 1979).Google Scholar
  60. Pasternak, G. W., Goodman, R., and Snyder, S. H., 1975, An endogenous morphine-like factor in mammalian brain, Life Sci. 16: 1765–1769.PubMedCrossRefGoogle Scholar
  61. Pert, C. B., and Snyder, S. H., 1973, Opiate receptor: Demonstration in nervous tissue, Science 179:1011–1014.Google Scholar
  62. Pert, C. B., Pasternak, G., and Snyder, S. H., 1973, Opiate agonists and antagonists discriminated by receptor binding in the brain, Science 182: 1359–1361.PubMedCrossRefGoogle Scholar
  63. Pert, A., Simantov, R., and Snyder, S. H., 1977, A morphine-like factor in mammalian brain: Analgesic activity in rats, Brain Res. 136: 523–533.PubMedCrossRefGoogle Scholar
  64. Pomeranz, B., and Chiu, D., 1976, Naloxone blockade of acupuncture analgesia: Endorphin implicated, Life Sci. 19: 1757–1762.PubMedCrossRefGoogle Scholar
  65. Pomeranz, B., Cheng, R., and Law, P., 1977, Acupuncture reduces electrophysiological and behavioral responses to noxious stimuli: pituitary is implicated, Exp. Neurol. 54: 172–178.PubMedCrossRefGoogle Scholar
  66. Schmitz, H., 1925–1926, Die Opiumbehandlung bei Geisteskrankheiten insbesondere bei Melancholie, ihre Geschichte, ihr heutiger Stand und eigene Erfahrungen, Allg. Ztschr. Psychiat. 83: 92–113.Google Scholar
  67. Seevers, M. H., and Deneau, G. A., 1961, A critique of the “dual action” hypothesis of morphine physical dependence, Arch. Int. Pharmacodyn. Thér. 140: 514–520.Google Scholar
  68. Segal, D. S., Browne, R. G., Bloom, F., Ling, N., and Guillemin, R., 1977, β-endorphin: Endogenous opiate or neuroleptic? Science 198: 411–413.Google Scholar
  69. Simon, E. J., Hiller, J. M., and Edelman, I., 1973, Stereospecific binding of the potent narcotic analgesic (3H)etorphine to rat-brain homogenate, Proc. Nat. Acad. Sci. (Washington) 70:1947–1949.Google Scholar
  70. Snyder, S. H., 1977, Opiate receptors and internal opiates, Sci. American 236 (3): 44–56.CrossRefGoogle Scholar
  71. Snyder, S. H., 1979, Receptors, neurotransmitters and drug responses, New Engl. J. Med. 300: 465–472.PubMedCrossRefGoogle Scholar
  72. Suda, T., Liotta, A. S., and Krieger, D. T., 1978, ß-endorphin is not detectable in plasma from normal human subjects, Science 202: 221–223.PubMedCrossRefGoogle Scholar
  73. Takagi, H., Satoh, M., Akaike, A., Shibata, T., and Kuraishi, Y., 1977, The nucleus reticularis gigantocellularis of the medulla oblongata is a highly sensitive site in the production of morphine analgesia in the rat, Eur. J. Pharmacol. 45: 91–92.PubMedCrossRefGoogle Scholar
  74. Takagi, H., Satoh, M., Akaike, A., Shibata, T., Yajima, H., and Ogawa, H., 1978, Analgesia by enkephalins injected into the nucelus reticularis gigantocellularis of rat medulla oblongata, Eur. J. Pharmacol. 49: 113–116.PubMedCrossRefGoogle Scholar
  75. Terenius, L., 1973, Characteristics of the “receptor” for narcotic analgesics in synaptic plasma membrane fraction from rat brain, Acta Pharmacol. Toxicol. 33: 377–384.CrossRefGoogle Scholar
  76. Terenius, L., and Wahlström, A., 1974, Inhibitors of narcotic receptor binding in brain extracts and cerebrospinal fluid, Acta Pharmacol. Toxicol. 35 (Suppl. 1): 55.Google Scholar
  77. Terenius, L., and Wahlström, A., 1975a, Morphine-like ligand for opiate receptors in human CSF, Life Sci. 16: 1759–1764.CrossRefGoogle Scholar
  78. Terenius, L., and Wahlström, A., 1975b, Search for an endogenous ligand for the opiate receptor, Acta Physiol. Scand. 94: 74–81.PubMedCrossRefGoogle Scholar
  79. Terenius, L., Wahlström, A., and Agren, H., 1977, Naloxone (Narcan) treatment in depression: Clinical observations and effects on CSF endorphins and monoamine metabolites, Psychopharmacology 54: 31–33.PubMedCrossRefGoogle Scholar
  80. Teschemacher, H., Opheim, K. E., Cox, B. M., and Goldstein, A., 1975, A peptide-like substance from pituitary that acts like morphine. 1. Isolation, Life Sci. 16: 1771–1776.PubMedCrossRefGoogle Scholar
  81. Verhoeven, W. M. A., van Praag, H. M., van Ree, J. M., and de Wied, D., 1979, Improvement of schizophrenic patients treated with (des-tyr’)-y-endorphin (DTyE), Arch. Gen. Psychiat. 36: 294–298.PubMedCrossRefGoogle Scholar
  82. Volavka, J., Mallya, A., Baig, S., and Perez-Cruet, J., 1977, Naloxone in chronic schizophrenia, Science 196: 1227–1228.PubMedCrossRefGoogle Scholar
  83. Wagemaker, H., and Cade, R., 1977, The use of hemodialysis in chronic schizophrenia, Amer. J. Psychiat. 134: 684–685.PubMedGoogle Scholar
  84. Watson, S. J., Berger, P. A., Akil, H., Mills, M. J., and Barchas, J. S., 1978, Effects of naloxone on schizophrenia: Reduction in hallucinations in a subpopulation of subjects, Science 201:73–76.Google Scholar
  85. Wei, E., and Loh, H., 1976, Physical dependence on opiate-like peptides, Science 193: 1262–1263.PubMedCrossRefGoogle Scholar
  86. Wikler, A., and Carter, R. L., 1953, Effects of single doses of N-allylnormorphine on hindlimb reflexes of chronic spinal dogs during cycles of morphine addiction, J. Pharmacol. Exp. Ther. 109: 92–101.PubMedGoogle Scholar
  87. Wikler, A., and Frank, K., 1948, Hindlimb reflexes in chronic spinal dogs during cycles of addiction to morphine and methadone, J. Pharmacol. Exp. Ther. 94: 382–400.PubMedGoogle Scholar
  88. Wikler, A., and Rayport, M., 1954, Lower limb reflexes of a chronic “spinal” man in cycles of morphine and methadone addiction, Arch. Neurol. Psychiat. (Chicago) 71: 160–174.Google Scholar
  89. Wikler, A., Fraser, H. F., and Isbell, H., 1953, N-allylnormorphine; Effects of single doses and precipitation of acute “abstinence syndromes” during addiction to morphine, methadone or heroin in man (post-addicts), J. Pharmacol. Exp. Ther. 109: 8–20.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Abraham Wikler
    • 1
  1. 1.Department of PsychiatryUniversity of Kentucky Medical CenterLexingtonUSA

Personalised recommendations