Advertisement

Sinterable Powders from Laser-Driven Reactions

  • John S. Haggerty
  • W. Roger Cannon

Abstract

Increasingly, because of their superior properties, ceramic materials are being considered for applications where there are high stress levels and where their failure would cause a major problem. These properties include hardness, high-temperature strength, erosion, oxidation and corrosion resistance, low density, and, for some applications, specific electrical and optical properties. The use of ceramic materials in these applications can only be considered, however, if their reliability is improved. Brittle materials fail catastrophically, and the wide distribution of observed strengths specifically associated with ceramic materials forces engineers to design so conservatively that ceramics lose their intrinsic advantages relative to conventional materials. For instance, it is impossible to design for a load stress that is less than one-tenth the mean strength and retain a superior strength to weight ratio.

Keywords

Laser Intensity Sinterable Powder Reaction Threshold Powder Characteristic Unimolecular Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson, S. W., 1960, The Foundations of Chemical Kinetics, McGraw-Hill, New York, Chapter 9.Google Scholar
  2. Braker, W., and Mossman, A. L., 1971, Matheson Gas Data Book, 5th Edition, Matheson Gas Products, E. Rutherford, N.J., p. 506.Google Scholar
  3. Coble, R. L., 1960, Proc. of the 4th Intl. Conf. on Reactivity of Solids, Amsterdam.Google Scholar
  4. Cochet, G., Meliottee, H., and Delbougo, R., 1975, Proc. 5th International Conference on Chem. Vapour Deposition (eds. J. M. Bloucher and T. E. Hintermann ), Fuler Res. Int., pp. 43–55.Google Scholar
  5. Cox, D. M., and Horsley, J. A., 1980, J. Chem. Phys. 72: 864.CrossRefGoogle Scholar
  6. Cullity, B. D., 1956, Elements of X-Ray Diffraction, Addison-Wesley, Reading, Mass., p. 261.Google Scholar
  7. Danforth, S. C., June, 1978, Effective Control of the Microstructure of Reaction Bonded Si3N4 as Related to Improved Mechanical Properties, Ph.D. Thesis, Brown University, Providence, RI.Google Scholar
  8. Deutsch, T. F., 1979, J. Chem. Phys. 70: 1187.CrossRefGoogle Scholar
  9. Dressler, K., and Ramsay, D. A., 1959, Phil. Trans. Roy. Soc. 5,251–553.Google Scholar
  10. Dubois, I., 1968, Can. J. Phys. 46: 2485.CrossRefGoogle Scholar
  11. Easterling, K. E., and Thölen, A. R., 1972, Acta Met. 20: 1001–8.CrossRefGoogle Scholar
  12. Freund, S. M., and Danen, W. C., October 1977, Purification of Materials using Infrared Lasers: Removal of Diborane from Silane, Proc. 9th Annual Electro-Optics/Laser Conference and Exhibition, Anaheim, Calif., p. 609.Google Scholar
  13. Freund, S. M., and Danen, W. C., 1979, lnorg. Nucl. Chem. Lett. 15:45.Google Scholar
  14. Galasso, F. S., Veltri, R. D., and Croft, W. J., 1978, Bull. Am. Ceram. Soc. 57: 453.Google Scholar
  15. Garing, J. S., Nielsen, H. H., and Rao, K. N., 1959, J. Mol. Spectrosc. 3: 496–527.CrossRefGoogle Scholar
  16. Gaydon, A. G., and Wolfhard, H. G., 1970, Flames: Their Structure, Radiation, and Temperature, Chapman and Hall, London.Google Scholar
  17. Greskovich, C. D., Prochazka, S., and Rosolowskii, J. H., November 1976, Basic Research on Sinterable Powders from Laser-Driven Reactions 241 Technology Development for Sintered Ceramics, Report AFML-TR-179, G.E. Research and Development Laboratory under contract with the AF Materials Laboratory.Google Scholar
  18. Haas, C. H., and Ring, M. A., 1975, Inorg. Chem. 14: 2253.CrossRefGoogle Scholar
  19. Haggerty, J. S., and Cannon, W. R., October 1978, Sinterable Powders from Laser Driven Reactions, Report on Contract N00014–77-C-0581, M.I.T., Cambridge, Mass. JANAF Thermochemical Tables, 1971, NSRDS-NBS37, Washington, D.C.Google Scholar
  20. Jensen, C., Steinfeld, J. I., and Levine, R. D., 1978, J. Chem. Phys. 69: 1432.CrossRefGoogle Scholar
  21. Lin, S.-S., 1977, J. Electrochem. Soc. 124: 1945.CrossRefGoogle Scholar
  22. Lin, S. T., and Ronn, A. M., 1978, Chem. Phys. Lett. 56: 414.CrossRefGoogle Scholar
  23. Lyman, J. L., Quigley, G. P., and Judd, O. P., 1980, Single-Infrared-Frequency Studies of Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, in Multiple-Photon Excitation and Dissociation of Polyatomic Molecules (ed. C. Cantrell ), Springer-Verlag, Heidelberg and Berlin.Google Scholar
  24. Mason, S. C., 1977, J. Colloid and Interface Sci. 58: 275–285.CrossRefGoogle Scholar
  25. Patanker, S. V., and Spalding, D. B., 1970, Heat and Mass Transfer in Boundary Layers, 2nd Edition, Intertext Books, London.Google Scholar
  26. Patty, R. R., Russwarm, G. M., and Morgan, D. R., 1974, Appl. Optics 13: 2850–4.CrossRefGoogle Scholar
  27. Pearse, R. W. B., and Gaydon, A. G., 1976, The Identification of Molecular Spectra, 4th edition, Chapman and Hall, London.CrossRefGoogle Scholar
  28. Powell, C. F., 1966, Chemically Deposited Nonmetals in Vapor Deposition (eds. C. F. Powell, J. H. Oxley, and J. M. Blocher), John Wiley, New York, p. 343.Google Scholar
  29. Purnell, J. H., and Walsh, R., 1966, Proc. Roy. Soc. (London), A293: 543.CrossRefGoogle Scholar
  30. Robinson, P. J., and Holbrook, K. A., 1972, Unimolecular Reactions, Wiley-Interscience, New York.Google Scholar
  31. Ronn, A. M., and Earl, B. L., 1977, Chem. Phys. Lett. 45: 556.CrossRefGoogle Scholar
  32. Spalding, D. B., 1977, Genmix: A General Computer Program for Two Dimensional Parabolic Phenomena, Pergamon Press, Oxford.Google Scholar
  33. Steinfeld, J. I., Burak, I., Sutton, D. G., and Nowak, A. V., 1970, J. Chem. Phys. 52: 5421.CrossRefGoogle Scholar
  34. Suyama, Y., and Kato, A., 1976, J. Am. Chem. Soc. 59: 146–49.Google Scholar
  35. Tindal, C. H., Straley, J. W., and Nielsen, H. H., 1942, Phys. Rev. 62: 151–59.CrossRefGoogle Scholar
  36. Vande Hulst, H. C., 1957, Light Scattering of Small Particles, John Wiley, New York.Google Scholar
  37. Warren, B. E., 1969, X-Ray Diffraction, Addison-Wesley, Reading, Mass., p. 258.Google Scholar
  38. Woodin, R. L., Bomse, D. S., and Beauchamp, J. E., 1978, J. Am. Chem. Soc. 100: 3248.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • John S. Haggerty
    • 1
  • W. Roger Cannon
    • 1
  1. 1.Energy LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations