Multiphoton Infrared Excitation and Reaction of Organic Compounds

  • Wayne C. Danen
  • J. C. Jang


The field of infrared laser photochemistry has burgeoned in the past several years. Excitation with intense, pulsed, infrared laser radiation has been shown to promote molecules to high vibrational levels of the ground electronic state as the result of the absorption of many infrared photons, frequently in the absence of any collisions. As a consequence, the phenomenon is sometimes referred to as megawatt infrared photochemistry or photochemistry in the electronic ground state. Much interest has centered on laser isotope separation, probing the multiphoton absorption process, and observation of reactions that occur when a molecule finds itself suddenly immersed in a sea of infrared photons.


Absorption Cross Section Vibrational Energy Laser Fluence Vibrational Excitation Irradiate Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambartzumian, R. V., and Letokhov, V. S., 1977, Multiple photon infrared laser photochemistry, in Chemical and Biochemical Applications of Lasers, Volume III (ed. C. B. Moore ), Academic Press, New York, pp. 167–316.Google Scholar
  2. Back, M. H., and Back, R. A., 1979, The decomposition of cyclobutanone vapor induced by infrared radiation from a pulsed CO2 TEA laser, Can. J. Chem. 57:1511.CrossRefGoogle Scholar
  3. Bado, P., and van den Bergh, H., 1978, Pressure dependence in the multiphoton dissociation of 32SF6, J. Chem. Phys. 68:4188.CrossRefGoogle Scholar
  4. Baldwin, A. C., Barker, J. R., Golden, D. M., Duperrex, R., and van den Bergh, H., 1979, Infrared multiphoton chemistry: Comparison of theory and experiment, solution of the master equation, Chem. Phys. Lett. 62:178.CrossRefGoogle Scholar
  5. Bates, Jr., R. D., Flynn, G. W., and Knudtson, J. T., 1970, Laser-induced 16-it fluorescence in SF6: Acoustic effects, J. Chem. Phys. 53:3621.CrossRefGoogle Scholar
  6. Bauer, S. H., 1978, How energy accumulation and disposal affect the rates of reaction, Chem. Rev. 78:147.CrossRefGoogle Scholar
  7. Benson, S. W., 1978, Thermochemistry and kinetics of sulfur-containing molecules and radicals, Chem. Rev. 78:23.CrossRefGoogle Scholar
  8. Benson, S. W., and O’Neal, H. E., 1970, Kinetic data on gas phase unimolecular reactions, United States Department of Commerce, NSRDS-NBS 21.Google Scholar
  9. Berry, M. J., 1974, Chloroethylene photochemical lasers: Vibrational energy content of the HC1 molecular elimination products, J. Chem. Phys. 61:3114.CrossRefGoogle Scholar
  10. Bialkowski, S. E., and Guillory, W. A., 1980, Dynamic processes of NH2 generated by the IR photolysis of CH3NH2, J. Photochem. in press.Google Scholar
  11. Birely, J. H., and Lyman, J. L., 1975, Effect of reagent vibrational energy on measured reaction rate constants, J. Photochem. 4:269.CrossRefGoogle Scholar
  12. Black, J., Yablonovitch, E., Bloembergen, N., and Mukamel, S., 1977, Collisionless multi-photon dissociation of SF6: A statistical thermodynamics process, Phys. Rev. Lett. 38:1131.CrossRefGoogle Scholar
  13. Black, J., Kolodner, P., Shultz, M., Yablonovitch, E., and Bloembergen, N., 1979, Collisionless multiphoton energy deposition and dissociation of SF6, Phys. Rev. A. 19:704.CrossRefGoogle Scholar
  14. Bloembergen, N., and Yablonovitch, E., 1978, Infrared laser induced unimolecular reactions, Physics Today 31:23.CrossRefGoogle Scholar
  15. Bomse, D. S., Woodin, R. L., and Beauchamp, J. L., 1978, Multiphoton dissociation of molecules with low power CW infrared lasers, in Advances in Laser Chemistry (ed. A. H. Zewail), Springer, New York.Google Scholar
  16. Bomse, D. S., Woodin, R. L., and Beauchamp, J. L., 1979, Molecular activation with low intensity CW infrared laser radiation. Multiphoton dissociation of ions derived from diethyl ether, J. Am. Chem. Soc. 101:5503.CrossRefGoogle Scholar
  17. Braun, W., Herron, J. T., Tsang, W., and Churney, K., 1978, High intensity infrared laser irradiation calorimetry: Direct-determination of heat input to chlorodifluoromethane and ethyl acetate, Chem. Phys. Lett. 59:492.CrossRefGoogle Scholar
  18. Brenner, D. M., 1978, Infrared multiphoton-induced chemistry of ethyl vinyl ether: Dependence of branching ratio on laser pulse duration, Chem. Phys. Lett. 57:357.CrossRefGoogle Scholar
  19. Buechele, J. L., Weitz, E., and Lewis, F. D., 1979, Laser-induced infrared multiphoton isomerization of hexadienes, J. Am. Chem. Soc. 101:3700.CrossRefGoogle Scholar
  20. Burak, I., Houston, P, Sutton, D. G., and Steinfeld, J. I., 1970, Observation of laser-induced acoustic waves in SF6, J. Chem. Phys. 53:3632.CrossRefGoogle Scholar
  21. Calvert, J. G., and Pitts, Jr., J. N., 1966, Photochemistry, John Wiley, New York, p. 19.Google Scholar
  22. Cantrell, C. D., Freund, S. M., and Lyman, J. L., 1979, Laser-induced chemical reactions, in Laser Handbook, Volume III (ed. M. L. Stitch), North-Holland, Amsterdam.Google Scholar
  23. Cheng, C., and Keehn, P., 1977, Organic chemistry by infrared lasers. 1. Isomerization of allene and methylacetylene in the presence of silicon tetrafluoride, J. Am. Chem. Soc. 99:5808.CrossRefGoogle Scholar
  24. Colussi, A. J., Benson, S. W., Hwang, R. J., and Tiee, J. J., 1977, Intramolecular isotope effect in laser multiphoton dissociation of CH2DCH2C1, Chem. Phys. Lett. 52:349.CrossRefGoogle Scholar
  25. Cox, D. M., Hall, R. B., Horsley, J. A., Kramer, G. M., Rabinowitz, P., and Kaldor, A., 1979, The isotope selectivity of IR laser driven unimolecular dissociation of a volatile uranyl compound, Science 205:390.CrossRefGoogle Scholar
  26. Danen, W. C., 1979, Infrared laser induced organic reactions. 2. Laser vs. thermal inducement of unimolecular and hydrogen bromide catalyzed bimolecular dehydration of alcohols, J. Am. Chem. Soc. 101:1187.CrossRefGoogle Scholar
  27. Danen, W. C., 1980, Pulsed infrared laser induced organic chemical reactions, Opt. Eng. 19:21.Google Scholar
  28. Danen, W. C., and Hanh, N. H., 1980, unpublished results.Google Scholar
  29. Danen, W. C., Munslow, W. D., and Setser, D. W., 1977, Infrared laser induced organic reactions. 1. Irradiation of ethyl acetate with a pulsed CO2 laser. Selective inducement vs. thermal reaction, J. Am. Chem. Soc. 99:6961.CrossRefGoogle Scholar
  30. Danen, W. C., Koster, D. F., and Zitter, R. N., 1979, Demonstration of Woodward-Hoffmann behavior in the pulsed, infrared laser induced reaction of cis-3,4-dichlorocyclobutene, J. Am. Chem. Soc. 101:4281.CrossRefGoogle Scholar
  31. Danen, W. C., Rio, V. C., and Setser, D. W., 1980, unpublished results.Google Scholar
  32. Dever, D. F., and Grunwald, E., 1976, Megawatt infrared laser chemistry of CCIF3 and CCI3F. 1. Photochemistry, Photophysics, and Effect of H2, J. Am. Chem. Soc. 98:5055.CrossRefGoogle Scholar
  33. Douglas, D. J., and Moore, C. B., 1979, Vibrational relaxation of HF(v = 3, 4) by HF, H2, D2, CO2, and isobutene, in Laser-Induced Processes in Molecules, Physics and Chemistry (eds. K. L. Kompa and S. D. Smith), Springer-Verlag, New York, pp. 337–338.Google Scholar
  34. Drozdoski, W. S., Fakhv, A., and Bates, Jr., R. D., 1977, Deactivation of vibrationally excited CD3H using laser-induced fluorescence, Chem. Phys. Lett. 47:309.CrossRefGoogle Scholar
  35. Drozdoski, W. S., Bates, Jr., R. D., and Siebert, D. R., 1978, Vibrational energy flow in CD3H and CD3H-polyatomic mixtures, J. Chem. Phys. 69:863.CrossRefGoogle Scholar
  36. Frey, H. M., and Pope, B. M. 1966, Thermal unimolecular isomerization of cis-hexa-1,3-diene, J. Chem. Soc. A, 1701.Google Scholar
  37. Frey, H. M., and Walsh, R., 1978, Unimolecular reactions, in Gas Kinetics and Energy Transfer, Vol. 3 (eds. P. G. Ashmore and R. J. Donovan), The Chemical Society, London, pp. 1–41.CrossRefGoogle Scholar
  38. Fuss, W., Kompa, K. L., Proch, D., and Schmid, W. E., 1977, High power infrared laser chemistry, in Lasers in Chemistry (ed. M. A. West), Elsevier Publishing Co., Amsterdam, pp. 235–244.Google Scholar
  39. Garcia, D., and Keehn, P. M., 1978, Organic chemistry by infrared lasers. 2. Retro-Diels-Alder reactions, J. Am. Chem. Soc. 100:6111.CrossRefGoogle Scholar
  40. Glatt, I., and Yogev, A., 1976, Photochemistry in the electronic ground state. 4. Infrared laser induced isomerization of labeled compounds. A possible route for isotope separation, J. Am. Chem. Soc. 98:7087.CrossRefGoogle Scholar
  41. Grant, E. R., Schulz, P. A., Sudbe, Aa. S., Shen, Y. R., and Lee, Y. T., 1978, Is multiphoton dissociation of molecules a statistical thermal process?, Phys. Rev. Lett. 40:115.CrossRefGoogle Scholar
  42. Grunwald, E., Dever, D. F., and Keehn, P. M., 1978, Megawatt Infrared Laser Chemistry, John Wiley, New York.Google Scholar
  43. Grunwald, E., Lonzetta, C. M., and Popok, S., 1979, Intermolecular energy exchange of infrared-laser excited CHCIF2 or SiF4 with Br2 at excitation energies of 70–200 kJ/mol, J. Am. Chem. Soc. 101:5062.CrossRefGoogle Scholar
  44. Haas, Y., and Yahav, G., 1977, Gas phase unimolecular decomposition and chemiluminescence of tetramethyldioxetane initiated by a TEA CO2 laser, Chem. Phys. Lett. 48:63.CrossRefGoogle Scholar
  45. Hall, R. B., and Kaldor, A., 1979, Multiple IR photon laser induced reactions of cyclopropane, J. Chem. Phys. 70:4027.CrossRefGoogle Scholar
  46. Hassler, J. C., and Setser, D. W., 1966, RRKM calculated unimolecular reaction rates for chemically and thermally activated C2H5Cl, 1,1-C2H4Cl2, and 1,2-C2H4Cl2, J. Chem. Phys. 45: 3246.CrossRefGoogle Scholar
  47. Herman, I. P., and Marling, J. B., 1979, Vibrationally stimulated addition reactions between hydrogen halides and unsaturated hydrocarbons: A negative result, J. Chem. Phys. 71: 643.CrossRefGoogle Scholar
  48. Holmes, B. E., and Setser, D. W., 1975, Energy disposal in unimolecular reactions. Four-centered elimination of HCI, J. Phys. Chem. 79:1320.CrossRefGoogle Scholar
  49. Hovis, F. E., and Moore, C. B., 1980, Energy transfer and laser photochemistry, in press.Google Scholar
  50. Hsu, D. S. Y., and Manuccia, T. J., 1978, Deuterium enrichment by CW laser-induced reaction of methane, Appl. Phys. Lett. 33:915.CrossRefGoogle Scholar
  51. Hwang, W. C., Herrn, R. R., Kalsch, J. F., and Gust, G. R., 1979, Multiple-photon chemistry induced by a pulsed CO2 laser at moderate fluences, Aerospace Report No. ATR-79(8420)-1, May 1979.Google Scholar
  52. JANAF Thermochemical Tables, 1971, 2nd ed., U.S. Bureau of Standards, Publication NSRDS-NBS 37.Google Scholar
  53. Jang, J. C., and Setser, D. W., 1979, Collisional effects in infrared multiple photon induced unimolecular reactions of fluoroethane and trifluoroethane, J. Phys. Chem. 83:2809.CrossRefGoogle Scholar
  54. Jensen, C. C., Steinfeld, J. I., and Levine, R. D., 1978, Information theoretic analysis of multiphoton excitation and collisional deactivation in polyatomic molecules, J. Chem. Phys. 69:1432.CrossRefGoogle Scholar
  55. Johnson, R. L., and Setser, D. W., 1967, Unimolecular reactions of chemically activated C2H5Br, 1,2-C2H4Br2, and 1,2-C2H4BrC1 and the reaction of methylene with CH2Br2 and CH2BrCl, J. Phys. Chem. 71:4366.CrossRefGoogle Scholar
  56. Kaldor, A., Hall, R. B., Cox, D. M., Horsley, J. A., Rabinowitz, P., and Kramer, G. M., 1979, Infrared laser chemistry of large molecules, J. Am. Chem. Soc. 101:4465.CrossRefGoogle Scholar
  57. Kim, K. C., and Setser, D. W., 1974, Unimolecular reactions and energy partitioning. Three-and four-centered elimination reactions of chemically activated 1,1,2-trichloroethane-do, -d1, and -d2, J. Phys. Chem. 78:2166.CrossRefGoogle Scholar
  58. Knudtson, J. T., and Flynn, G., 1973, Laser fluorescence study of vibrational energy transfer in CH3C1*, J. Chem. Phys. 58:2684.CrossRefGoogle Scholar
  59. Kolodner, P., Winterfield, C., and Yablonovitch, E., 1977, Molecular dissociation of SF6 by ultra-short CO2 laser pulses, Optics Commun. 20:119.CrossRefGoogle Scholar
  60. Kompa, K. L., Fuss, W., Proch, D., Schmid, W. E., Smith, S. D., and Schröder, H., 1979, Towards an understanding of infrared multiphoton absorption and dissociation, in Nonlinear Behavior of Molecules, Atoms, and Ions in Electric, Magnetic, or Electromagnetic Fields, Elsevier Publishing Co., Amsterdam, pp. 55–63.Google Scholar
  61. Letokhov, V. S., and Moore, C. B., 1977, Laser isotope separation, in Chemical and Biochemical Applications of Lasers, Volume III (ed. C. B. Moore), Academic Press, New York, pp. 1–165.Google Scholar
  62. Lyman, J. L., 1977, A model for unimolecular reaction of sulfur hexafluoride, J. Chem. Phys. 69:1868.CrossRefGoogle Scholar
  63. Lyman, J. L., Danen, W. C., Nilsson, A. C., and Nowak, A. V., 1979, Multiple-photon excitation of difluoroamino sulfur pentafluoride: A study of absorption and dissociation, J. Chem. Phys. 71:1206.CrossRefGoogle Scholar
  64. Lussier, F. M., and Steinfeld, J. I., 1977, Multiple infrared photon dissociation of vinyl chloride, Chem. Phys. Lett. 50:175.CrossRefGoogle Scholar
  65. Marcoux, P. J., and Setser, D. W., 1978, Vibrational energy transfer probabilities of highly vibrationally excited 1,1,1-trifluoroethane, J. Phys. Chem. 82:97.CrossRefGoogle Scholar
  66. Mukamel, S., 1979, Stochastic reduction for molecular multiphoton processes, J. Chem. Phys. 70:5834.CrossRefGoogle Scholar
  67. Nikitin, E. E., 1974, Theory of elementary atomic and molecular processes in gases, Oxford University Press, London.Google Scholar
  68. Olszyna, K. J., Grunwald, E., Keehn, P. M., and Anderson, S. P., 1977, Megawatt infrared laser chemistry. II. Use of SiF4 as an inert sensitizer, Tetrahedron Lett. 1977:1609.CrossRefGoogle Scholar
  69. Plum, C. N., and Houston, P. L., 1980, Infrared photolysis of C2F4S2: A comparison of multiphoton dissociation models, Chem. Phys. 45:159.CrossRefGoogle Scholar
  70. Popok, S., Lonzetta, C. M., and Grunwald, E., 1979, Infrared laser induced bromination and chlorination of chlorodifluoromethane, J. Org. Chem. 44:2377.CrossRefGoogle Scholar
  71. Preses, J. M., Weston, R. E., Jr., and Flynn, G. W., 1977, Unimolecular decomposition of cyclo-C4H8 induced by a CO2 TEA laser, Chem. Phys. Lett. 46:69.CrossRefGoogle Scholar
  72. Pritchard, H. O., Pyke, J. B., and Trotman-Dickenson, A. F., 1955, The study of chlorine atom reactions in the gas phase, J. Am. Chem. Soc. 77:2629.CrossRefGoogle Scholar
  73. Quack, M., 1978, Theory of unimolecular reactions induced by the monochromatic infrared radiation, J. Chem. Phys. 69:1282.CrossRefGoogle Scholar
  74. Quack, M., and Troe, J., 1977, Unimolecular reactions and energy transfer of highly excited molecules, in Gas Kinetics and Energy Transfer, Vol. 2 (eds. P. G. Ashmore and R. J. Donovan), The Chemical Society, London, pp. 175–238.CrossRefGoogle Scholar
  75. Quick, Jr., C. R., and Wittig, C., 1978a, IR photodissociation of vinyl fluoride: time-resolved emission under collisionless conditions, Chem. Phys. 32:75.CrossRefGoogle Scholar
  76. Quick, Jr., C. R., and Wittig, C., 1978b, Infrared photodissociation of fluorinated ethanes and ethylenes: Collisional effects in the multiple photon absorption process, J. Chem. Phys. 69:4201.CrossRefGoogle Scholar
  77. Quick, Jr, C. R., Tiee, J. J., Fischer, T. A., and Wittig, C., 1979, A direct measurement of the unimolecular decomposition of 1,1-difluoroethane via IR laser photolysis, Chem. Phys. Lett. 62:435.CrossRefGoogle Scholar
  78. Reiser, C., Lussier, F. M., Jensen, C. C., and Steinfeld, J. I., 1979, Infrared photochemistry of halogenated ethylenes, J. Am. Chem. Soc. 101:350.CrossRefGoogle Scholar
  79. Richardson, T. H., and Setser, D. W., 1977, Laser induced decomposition of fluorethanes, J. Phys. Chem. 81:2301.CrossRefGoogle Scholar
  80. Robinson, P. J., 1975, Unimolecular reactions, in Reaction Kinetics, Vol. 1 (ed., P. G. Ashmore), The Chemical Society, London, pp. 93–160.CrossRefGoogle Scholar
  81. Robinson, P. J., and Holbrook, K. A., 1972, Unimolecular Reactions, Wiley-Interscience, New York.Google Scholar
  82. Ronn, A. M., 1979, Laser chemistry, Scientific American, 240 (5):114–128.CrossRefGoogle Scholar
  83. Rosenfeld, R. N, Brauman, J. I., Barker, J. R., and Golden, D. M., 1977, Infrared photo-decomposition of ethyl vinyl ether. A chemical probe of multiphoton dynamics, J. Am. Chem. Soc. 99:8063.CrossRefGoogle Scholar
  84. Ross, R. A., and Stimson, V. R., 1960, Catalysis by hydrogen halides in the gas phase. Part III. Isopropyl and hydrogen bromide, J. Chem. Soc., 3090.Google Scholar
  85. Schulz, P. A., Sudbe, Aa. S., Krajnovich, D. J., Kwok, H. S., Shen, Y. R., and Lee, Y. T., 1979, Multiphoton dissociation of polyatomic molecules, Ann. Rev. Phys. Chem., 30:379.CrossRefGoogle Scholar
  86. Schwartz, R. N., and Herzfeld, K. F., 1954, Vibrational relaxation times in gases (Three dimensional treatment), J. Chem. Phys. 22:767.CrossRefGoogle Scholar
  87. Schwartz, R. N., Slawsky, Z. I., and Herzfeld, K. F., 1952, Calculation of vibrational relaxation times in gases, J. Chem. Phys. 20:1591.CrossRefGoogle Scholar
  88. Shaub, W. M., and Bauer, S. H., 1975, Laser-powered homogeneous pyrolysis, Internat. J. Chem. Kinet. 7:509.CrossRefGoogle Scholar
  89. Shultz, M. J., and Yablonovitch, E., 1978, A statistical theory for collisionless multiphoton dissociation of SF6, J. Chem. Phys. 68:3007.CrossRefGoogle Scholar
  90. Steel, C., Starov, V., Leo, R., John, P., and Harrison, R. G., 1979, Chemical thermometers in megawatt infrared laser chemistry: The decomposition of cyclobutanone sensitized by ammonia, Chem. Phys. Lett. 62:121.CrossRefGoogle Scholar
  91. Stephensen, J. C, King, D. S., Goodman, M. F., and Stone, J., 1979, Experiment and theory for CO2 laser-induced CF2HCI decomposition rate dependence on pressure and intensity, J. Chem. Phys. 70:4496.CrossRefGoogle Scholar
  92. Stone, J., and Goodman, M. F., 1979, A re-examination of the use of rate equations to account for fluence dependence, intramolecular relaxation, and unimolecular decay in laser driven polyatomic molecules, J. Chem. Phys. 71:4068.CrossRefGoogle Scholar
  93. Sudbo, Aa. S., Schulz, P. A., Shen, Y. R., and Lee, Y. T., 1978, Three-and four-centered elimination of HCI in the multiphoton dissociation of halogenated hydrocarbons, J. Chem. Phys. 69:2312.CrossRefGoogle Scholar
  94. Sudbo, Aa. S., Schulz, P. A., Grant, E. R., Shen, Y. R., and Lee, Y. T., 1979, Simple bond rupture reactions in multiphoton dissociation of molecules, J. Chem. Phys. 70:912.CrossRefGoogle Scholar
  95. Tardy, D. C., and Rabinovitch, B. S., 1966, Collisional energy transfer. Thermal unimolecular systems in the low-pressure region, J. Chem. Phys. 45:3720.CrossRefGoogle Scholar
  96. Tardy, D. C., and Rabinovitch, B. S., 1977, Intermolecular vibrational energy transfer in thermal unimolecular systems, Chem. Revs. 77:369.CrossRefGoogle Scholar
  97. Taylor, R., 1975, The nature of the transition state in ester pyrolysis. Part II. The relative rates of pyrolysis of ethyl, isopropyl, and t-butyl acetates, phenylacetates, benzoates, phenyl carbonates, and N-phenylcarbomates, J. C. S. Perkin 11 1975:1025.Google Scholar
  98. Thiele, E., Goodman, M. F., and Stone, J., 1980, Can lasers be used to break chemical bonds selectively?, Opt. Eng. 19:10.Google Scholar
  99. Treanor, C. E., Rich, C. W., and Rehm, R. G., 1968, Vibrational relaxation of arharmonic oscillators with exchange-dominated collisions, J. Chem. Phys. 48:1798.CrossRefGoogle Scholar
  100. Tsang, W., Walker, J. A., Braun, W., and Herron, J. T., 1978, Mechanisms of decomposition of mixtures of ethyl acetate and isopropyl bromide subjected to pulsed infrared laser irradiation, Chem. Phys. Lett. 59:487.CrossRefGoogle Scholar
  101. Weitz, E., and Flynn, G., 1973a, Deactivation of laser excited CH3F in CH3F—X mixtures, J. Chem. Phys. 58:2679.CrossRefGoogle Scholar
  102. Weitz, E., and Flynn, G., 1973b, Partial Vibration energy transfer map for methyl fluoride: A laser fluorescence study, J. Chem. Phys. 58:2781.CrossRefGoogle Scholar
  103. Woodin, R. L., Bomse, D. S., and Beauchamp, J. L., 1978, Multiphoton dissociation of molecules with low power continuous wave infrared laser radiation, J. Am. Chem. Soc. 100:3248.CrossRefGoogle Scholar
  104. Woodin, R. L., Bomse, D. S., and Beauchamp, J. L., 1979, Multiphoton dissociation of molecules with low power CW infrared lasers: collisional enhancement of dissociation probabilities, Chem. Phys. Lett. 63:630.CrossRefGoogle Scholar
  105. Yahav, G., and Haas, Y., 1978, Time dependence of multiphoton dissociation of molecules in a strong infrared field. Real-time measurement using a nanosecond laser source, Chem. Phys. 35:41.CrossRefGoogle Scholar
  106. Yardley, J. T., and Moore, C. B., 1968, Vibrational energy transfer in methane, J. Chem. Phys. 49:1111.CrossRefGoogle Scholar
  107. Yogev, A., and Benmair, R. M. J., 1977, Photochemistry in the electron ground state. Quantitative electrocyclic isomerization induced by multiphoton absorption of infrared laser radiation, Chem. Phys. Lett. 46:290.CrossRefGoogle Scholar
  108. Yogev, A., and Loewenstein-Benmair, R. M. J., 1973, Photochemistry in the electronic ground state. II. Selective decomposition of trans-2-butene by pulsed carbon dioxide laser, J. Am. Chem. Soc. 95:8487.CrossRefGoogle Scholar
  109. Zittel, P. F., and Moore, C. B., 1973, Model for V-T, R relaxation: CH4 and CD4 mixtures, J. Chem. Phys. 58:2004.CrossRefGoogle Scholar
  110. Zitter, R. N., and Koster, D. F., 1976, Reaction rate difference in the laser excitation of different vibrational mode of CF3C1CF2C1, J. Am. Chem. Soc. 98:1613.CrossRefGoogle Scholar
  111. Zitter, R. N., and Koster, D. F., 1977, Frequency dependence of laser-initiated reaction rates of CF2C1CF2C1, J. Am. Chem. Soc. 99:5491.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Wayne C. Danen
    • 1
  • J. C. Jang
    • 1
  1. 1.Department of ChemistryKansas State UniversityManhattanUSA

Personalised recommendations