Skip to main content
Book cover

Serotonin pp 177–189Cite as

Descending Control of Pain Transmission: Possible Serotonergic-Enkephalinergic Interactions

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 133))

Abstract

To a somewhat suprising extent, many recent advances in our understanding of the role of serotonin in pain modulation derive more from anatomical and physiological studies than from pharmacological and behavioral analyses. This has resulted, in part, from the development of new anatomical methods for the localization of CNS monoamines. Concurrently, the development of methods for the localization of putative CNS transmitter peptides has allowed an analysis of possible interactions between, for example, serotonin, enkephalin and substance P.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.E., 1976, Naloxone reversal of analgesia produced by brain stimulation in the human. Pain 2: 161–166.

    Article  PubMed  CAS  Google Scholar 

  2. Akil, H., Liebeskind, J.C., 1975, Monoaminergic mechanisms of stimulation-produced analgesia. Brain Res. 94: 279–296.

    Article  PubMed  CAS  Google Scholar 

  3. Akil, H., Mayer, D.J. and Liebeskind, J.C., 1976, Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191: 961–963.

    Article  PubMed  CAS  Google Scholar 

  4. Basbaum, A.I., Clanton, C.H. and Fields, H.L., 1977, Three bulbo-spinal pathways from the rostral medulla of the cat: An auto-radiographic study of pain modulating systems, J. Comp. Neurol., 178: 209–224.

    Article  Google Scholar 

  5. Basbaum, A.I. and Fields, H.L., 1978, Endogenous pain control mechanisms: Review and hypothesis, Annals Neurol., 4: 451–462.

    Article  CAS  Google Scholar 

  6. Basbaum, A.I. and Fields, H.L., 1979, The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: Further studies on the anatomy of pain modulation, J. Comp. Neurol., in press.

    Google Scholar 

  7. Basbaum, A.I. and Glazer, E.J., 1979, Localization of serotonin (5HT) in the brainstem and spinal cord of the cat: correlation with the distribution of leu-enkephalin, Anat. Record, 193: 477.

    Google Scholar 

  8. Basbaum, A.I., Marley, N.J.G., O’Keefe, J. and Clanton, C.H., 1977, Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions. Pain 3: 43–56.

    Article  PubMed  CAS  Google Scholar 

  9. Basbaum, A.I. and Ralston, H.J., 1978, Projections from the nucleus raphe magnus in the primate, Pain Abst. 1: 259.

    Google Scholar 

  10. Bennett, G., Abdelmoumene, M., Hayashi, H., and Dubner, R., 1979, Morphology and physiology of Rexed’s substantia gelatinosa (SG) and lamina I neurons intracellularly stained with HRP, Anat. Record 193: 480.

    Google Scholar 

  11. Carlsson, A., Falk, B., Fuxe, K. and Hillarp, N., 1964, Cellular localization of monoamines in the spinal cord, Acta Physiol. Scand., 60: 112–119.

    Article  PubMed  CAS  Google Scholar 

  12. Chan-Palay, V., 1975, Fine structure of labelled axons in the cerebellar cortex and nuclei of rodents and primates after intraventricular infusions with tritiated serotonin, Anat. Embryol. 148: 235–265.

    Article  PubMed  CAS  Google Scholar 

  13. Christensen, B.N. and Perl, E.R., 1970, Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn, J. Neurophysiol., 33: 293–307.

    PubMed  CAS  Google Scholar 

  14. Dahlstrom, A. and Fuxe, K., 1965, Evidence for the existence of monoamine neurons in the central nervous system, Acta Physiol. Scand. 64, suppl. 247, 1–36.

    Google Scholar 

  15. Fields, H.L., and Basbaum, A.I., 1978, Brainstem control of spinal pain transmission neurons, Ann. Rev. Physiol., 40: 193–221.

    Article  Google Scholar 

  16. Fields, H.L., Basbaum, A.I., Clanton, C.H., and Anderson, S.D., 1977, Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons, Brain Res. 126: 441–453.

    Article  PubMed  CAS  Google Scholar 

  17. Glazer, E.J. and Basbaum, A.I., 1979a, Enkephalin perikarya in the marginal zone and sacral autonomic nucleus of the cat spinal cord, Neurosci. Abst. 5: 723.

    Google Scholar 

  18. Glazer, E.J. and Basbaum, A.I., 1979b, Immunocytochemical localization of leucine-enkephalin in cat CNS, Anat. Record, 193: 549.

    Google Scholar 

  19. Gobel, S.J., 1978a, Golgi studies of the neurons in layer I of the dorsal horn of the medulla (trigeminal nucleus caudalis) J. Comp. Neurol. 180: 375–394.

    Article  PubMed  CAS  Google Scholar 

  20. Gobel, S.J., 1978b, Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis), J. Comp. Neurol. 180: 395–413.

    Google Scholar 

  21. Hokfelt, T., Ljungdahl, A., Terenius, L., Elde, R. and Nilsson, G., 1977, Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: Enkephalin and Substance P, Proc. Natl. Acad. Sci. 74: 3081–3085.

    Article  PubMed  CAS  Google Scholar 

  22. Jessel, T.M. and Iversen, L.L., 1977, Opiate analgesics inhibit substance P release in rat trigeminal nucleus, Nature, 268: 549–551.

    Article  Google Scholar 

  23. LaMotte, C., Pert, C.B., and Snyder, S.H.. 1976, Opiate receptor binding in primate spinal cord: distribution and changes after dorsal root section, Brain Res., 112: 407–412.

    Article  PubMed  CAS  Google Scholar 

  24. Leger, L., and Descarries, L., 1978, Serotonin nerve terminals in the locus coeruleus of adult rat: a radioautographic study, Brain Res., 145: 1–14.

    Article  PubMed  CAS  Google Scholar 

  25. Martin, R.F., Jordan, L.M. and Willis, W.D., 1978, Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions, J. Comp. Neurol., 182: 77–88.

    Google Scholar 

  26. Mayer, D.J. and Liebeskind, J.C., 1974, Pain reduction by focal electrical stimulation of the brain: an anatomical and behavioral analysis, Brain Res., 68: 73–93.

    Article  PubMed  CAS  Google Scholar 

  27. Mayer, D.J. and Price, D.D., 1976, Central nervous system mechanisms of analgesia, Pain, 2: 379–404.

    Article  PubMed  CAS  Google Scholar 

  28. Melzack, R. and Wall, P.D., 1965, Pain mechanisms: a new theory, Science, 150: 971–979.

    Article  PubMed  CAS  Google Scholar 

  29. Messing, R.B. and Lytle, L.D., 1977, Serotonin-containing neurons: their possible role in pain and analgesia, Pain 4: 1–21.

    Article  PubMed  CAS  Google Scholar 

  30. Oliveras, J.L., Bourgin, S., Hery, F., Besson, J.M. and Hamon, M., 1977a, The topographical distribution of serotoninergic terminals in the spinal cord of the cat: biochemical mapping by the combined use of microdissection an microassay procedures, Brain Res., 138: 393–406.

    Article  PubMed  CAS  Google Scholar 

  31. Oliveras, J.L., Hosobuchi, Y., Redjemi, F., Guilbaud, G. and Besson, J.M., 1977b, Opiate antagonist, naloxone strongly reduces analgesia induced by stimulation of a raphe nucleus (centralis inferior), Brain Res., 120: 221–230.

    Article  PubMed  CAS  Google Scholar 

  32. Oliveras, J.L., Redjemi, F., Guilbaud, G., and Besson, J.M 1975, Analgesia induced by electrical stimulation of the inferior central nucleus of the raphe in the cat, Pain 2: 139–146.

    Article  Google Scholar 

  33. Poitras, D. and Parent, A., 1978, Atlas of the distribution of monoamine-containing nerve cell bodies in the brain stem of the cat, J. Comp. Neurol., 699–718.

    Google Scholar 

  34. Proudfit, H.K. and Anderson, E.G., 1975, Morphine analgesia: blockade by raphe magnus lesions, Brain Res., 98: 612–618.

    Article  PubMed  CAS  Google Scholar 

  35. Reynolds, D.V., 1969, Surgery in the rat during electrical analgesia induced by focal brain stimulation, Science, 64: 444–445.

    Article  Google Scholar 

  36. Ruda, M.A. and Gobel, S., 1979, Ultrastrutural characterization of axonal endings in the substantia gelatinosa which take up 3H serotonin, Brain Res., in press.

    Google Scholar 

  37. Sar, M., Stumpf, W.E., Miller, R.J., Chang, K.J. and Cuatrecasas, P., 1978, Immunohistochemical localization of enkephalin in rat brain and spinal cord, J. Comp. Neurol. 182: 17–38.

    Article  Google Scholar 

  38. Simantov, R., Kuhar, M.J., Uhl, G.R., and Snyder, J.H., 1977, Opioid peptide enkephalin: immunohistochemical mapping in the rat central nervous, system, Proc. Natl. Acad. Sci. 74: 2167–2171.

    Article  PubMed  CAS  Google Scholar 

  39. Sladek, Jr., J.R. and Walker, P., 1977, Serotonin-containing neuronal perikarya in the primate locus coeruleus and subcoeruleus, Brain Res., 134: 359–366.

    Article  PubMed  CAS  Google Scholar 

  40. Tenen, S.S., 1968, Antagonism of the analgesic effect of morphine and other drugs by p-chlorophenylalanine, a serotonin depletor, Psychopharmacologia 12: 278–285.

    Article  PubMed  CAS  Google Scholar 

  41. Vogt, M., 1974, The effect of lowering the 5-hydroxytrypamine content of the rat spinal cord on analgesia produced by morphine, J. Physiol., 236: 483–498.

    PubMed  CAS  Google Scholar 

  42. Wall, P.D.,1967, The laminar organization of dorsal horn and effects of descending impulses, J. Physiol., 188: 403–423.

    Google Scholar 

  43. Willis, W.D., Haber, L.H., and Martin, R.F., 1977, Inhibition of spinothalamic tract cells and interneurons by brain stem stimulation in the monkey, J. Neurophysiol., 40: 986–981.

    Google Scholar 

  44. Yaksh, T.L., 1979, Direct evidence that spinal serot-nin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray, Brain Res. 160: 180–185.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Basbaum, A.I. (1981). Descending Control of Pain Transmission: Possible Serotonergic-Enkephalinergic Interactions. In: Haber, B., Gabay, S., Issidorides, M.R., Alivisatos, S.G.A. (eds) Serotonin. Advances in Experimental Medicine and Biology, vol 133. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3860-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3860-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3862-8

  • Online ISBN: 978-1-4684-3860-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics