Advertisement

Serotonin pp 177-189 | Cite as

Descending Control of Pain Transmission: Possible Serotonergic-Enkephalinergic Interactions

  • Allan I. Basbaum
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 133)

Abstract

To a somewhat suprising extent, many recent advances in our understanding of the role of serotonin in pain modulation derive more from anatomical and physiological studies than from pharmacological and behavioral analyses. This has resulted, in part, from the development of new anatomical methods for the localization of CNS monoamines. Concurrently, the development of methods for the localization of putative CNS transmitter peptides has allowed an analysis of possible interactions between, for example, serotonin, enkephalin and substance P.

Keywords

Dorsal Horn Spinal Dorsal Horn Pain Transmission Superficial Dorsal Horn Trigeminal Nucleus Caudalis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, J.E., 1976, Naloxone reversal of analgesia produced by brain stimulation in the human. Pain 2: 161–166.PubMedCrossRefGoogle Scholar
  2. 2.
    Akil, H., Liebeskind, J.C., 1975, Monoaminergic mechanisms of stimulation-produced analgesia. Brain Res. 94: 279–296.PubMedCrossRefGoogle Scholar
  3. 3.
    Akil, H., Mayer, D.J. and Liebeskind, J.C., 1976, Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191: 961–963.PubMedCrossRefGoogle Scholar
  4. 4.
    Basbaum, A.I., Clanton, C.H. and Fields, H.L., 1977, Three bulbo-spinal pathways from the rostral medulla of the cat: An auto-radiographic study of pain modulating systems, J. Comp. Neurol., 178: 209–224.CrossRefGoogle Scholar
  5. 5.
    Basbaum, A.I. and Fields, H.L., 1978, Endogenous pain control mechanisms: Review and hypothesis, Annals Neurol., 4: 451–462.CrossRefGoogle Scholar
  6. 6.
    Basbaum, A.I. and Fields, H.L., 1979, The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: Further studies on the anatomy of pain modulation, J. Comp. Neurol., in press.Google Scholar
  7. 7.
    Basbaum, A.I. and Glazer, E.J., 1979, Localization of serotonin (5HT) in the brainstem and spinal cord of the cat: correlation with the distribution of leu-enkephalin, Anat. Record, 193: 477.Google Scholar
  8. 8.
    Basbaum, A.I., Marley, N.J.G., O’Keefe, J. and Clanton, C.H., 1977, Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions. Pain 3: 43–56.PubMedCrossRefGoogle Scholar
  9. 9.
    Basbaum, A.I. and Ralston, H.J., 1978, Projections from the nucleus raphe magnus in the primate, Pain Abst. 1: 259.Google Scholar
  10. 10.
    Bennett, G., Abdelmoumene, M., Hayashi, H., and Dubner, R., 1979, Morphology and physiology of Rexed’s substantia gelatinosa (SG) and lamina I neurons intracellularly stained with HRP, Anat. Record 193: 480.Google Scholar
  11. 11.
    Carlsson, A., Falk, B., Fuxe, K. and Hillarp, N., 1964, Cellular localization of monoamines in the spinal cord, Acta Physiol. Scand., 60: 112–119.PubMedCrossRefGoogle Scholar
  12. 12.
    Chan-Palay, V., 1975, Fine structure of labelled axons in the cerebellar cortex and nuclei of rodents and primates after intraventricular infusions with tritiated serotonin, Anat. Embryol. 148: 235–265.PubMedCrossRefGoogle Scholar
  13. 13.
    Christensen, B.N. and Perl, E.R., 1970, Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn, J. Neurophysiol., 33: 293–307.PubMedGoogle Scholar
  14. 14.
    Dahlstrom, A. and Fuxe, K., 1965, Evidence for the existence of monoamine neurons in the central nervous system, Acta Physiol. Scand. 64, suppl. 247, 1–36.Google Scholar
  15. 15.
    Fields, H.L., and Basbaum, A.I., 1978, Brainstem control of spinal pain transmission neurons, Ann. Rev. Physiol., 40: 193–221.CrossRefGoogle Scholar
  16. 16.
    Fields, H.L., Basbaum, A.I., Clanton, C.H., and Anderson, S.D., 1977, Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons, Brain Res. 126: 441–453.PubMedCrossRefGoogle Scholar
  17. 17.
    Glazer, E.J. and Basbaum, A.I., 1979a, Enkephalin perikarya in the marginal zone and sacral autonomic nucleus of the cat spinal cord, Neurosci. Abst. 5: 723.Google Scholar
  18. 18.
    Glazer, E.J. and Basbaum, A.I., 1979b, Immunocytochemical localization of leucine-enkephalin in cat CNS, Anat. Record, 193: 549.Google Scholar
  19. 19.
    Gobel, S.J., 1978a, Golgi studies of the neurons in layer I of the dorsal horn of the medulla (trigeminal nucleus caudalis) J. Comp. Neurol. 180: 375–394.PubMedCrossRefGoogle Scholar
  20. 20.
    Gobel, S.J., 1978b, Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis), J. Comp. Neurol. 180: 395–413.Google Scholar
  21. 21.
    Hokfelt, T., Ljungdahl, A., Terenius, L., Elde, R. and Nilsson, G., 1977, Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: Enkephalin and Substance P, Proc. Natl. Acad. Sci. 74: 3081–3085.PubMedCrossRefGoogle Scholar
  22. 22.
    Jessel, T.M. and Iversen, L.L., 1977, Opiate analgesics inhibit substance P release in rat trigeminal nucleus, Nature, 268: 549–551.CrossRefGoogle Scholar
  23. 23.
    LaMotte, C., Pert, C.B., and Snyder, S.H.. 1976, Opiate receptor binding in primate spinal cord: distribution and changes after dorsal root section, Brain Res., 112: 407–412.PubMedCrossRefGoogle Scholar
  24. 24.
    Leger, L., and Descarries, L., 1978, Serotonin nerve terminals in the locus coeruleus of adult rat: a radioautographic study, Brain Res., 145: 1–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Martin, R.F., Jordan, L.M. and Willis, W.D., 1978, Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions, J. Comp. Neurol., 182: 77–88.Google Scholar
  26. 26.
    Mayer, D.J. and Liebeskind, J.C., 1974, Pain reduction by focal electrical stimulation of the brain: an anatomical and behavioral analysis, Brain Res., 68: 73–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Mayer, D.J. and Price, D.D., 1976, Central nervous system mechanisms of analgesia, Pain, 2: 379–404.PubMedCrossRefGoogle Scholar
  28. 28.
    Melzack, R. and Wall, P.D., 1965, Pain mechanisms: a new theory, Science, 150: 971–979.PubMedCrossRefGoogle Scholar
  29. 29.
    Messing, R.B. and Lytle, L.D., 1977, Serotonin-containing neurons: their possible role in pain and analgesia, Pain 4: 1–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Oliveras, J.L., Bourgin, S., Hery, F., Besson, J.M. and Hamon, M., 1977a, The topographical distribution of serotoninergic terminals in the spinal cord of the cat: biochemical mapping by the combined use of microdissection an microassay procedures, Brain Res., 138: 393–406.PubMedCrossRefGoogle Scholar
  31. 31.
    Oliveras, J.L., Hosobuchi, Y., Redjemi, F., Guilbaud, G. and Besson, J.M., 1977b, Opiate antagonist, naloxone strongly reduces analgesia induced by stimulation of a raphe nucleus (centralis inferior), Brain Res., 120: 221–230.PubMedCrossRefGoogle Scholar
  32. 32.
    Oliveras, J.L., Redjemi, F., Guilbaud, G., and Besson, J.M 1975, Analgesia induced by electrical stimulation of the inferior central nucleus of the raphe in the cat, Pain 2: 139–146.CrossRefGoogle Scholar
  33. 33.
    Poitras, D. and Parent, A., 1978, Atlas of the distribution of monoamine-containing nerve cell bodies in the brain stem of the cat, J. Comp. Neurol., 699–718.Google Scholar
  34. 34.
    Proudfit, H.K. and Anderson, E.G., 1975, Morphine analgesia: blockade by raphe magnus lesions, Brain Res., 98: 612–618.PubMedCrossRefGoogle Scholar
  35. 35.
    Reynolds, D.V., 1969, Surgery in the rat during electrical analgesia induced by focal brain stimulation, Science, 64: 444–445.CrossRefGoogle Scholar
  36. 36.
    Ruda, M.A. and Gobel, S., 1979, Ultrastrutural characterization of axonal endings in the substantia gelatinosa which take up 3H serotonin, Brain Res., in press.Google Scholar
  37. 37.
    Sar, M., Stumpf, W.E., Miller, R.J., Chang, K.J. and Cuatrecasas, P., 1978, Immunohistochemical localization of enkephalin in rat brain and spinal cord, J. Comp. Neurol. 182: 17–38.CrossRefGoogle Scholar
  38. 38.
    Simantov, R., Kuhar, M.J., Uhl, G.R., and Snyder, J.H., 1977, Opioid peptide enkephalin: immunohistochemical mapping in the rat central nervous, system, Proc. Natl. Acad. Sci. 74: 2167–2171.PubMedCrossRefGoogle Scholar
  39. 39.
    Sladek, Jr., J.R. and Walker, P., 1977, Serotonin-containing neuronal perikarya in the primate locus coeruleus and subcoeruleus, Brain Res., 134: 359–366.PubMedCrossRefGoogle Scholar
  40. 40.
    Tenen, S.S., 1968, Antagonism of the analgesic effect of morphine and other drugs by p-chlorophenylalanine, a serotonin depletor, Psychopharmacologia 12: 278–285.PubMedCrossRefGoogle Scholar
  41. 41.
    Vogt, M., 1974, The effect of lowering the 5-hydroxytrypamine content of the rat spinal cord on analgesia produced by morphine, J. Physiol., 236: 483–498.PubMedGoogle Scholar
  42. 42.
    Wall, P.D.,1967, The laminar organization of dorsal horn and effects of descending impulses, J. Physiol., 188: 403–423.Google Scholar
  43. 43.
    Willis, W.D., Haber, L.H., and Martin, R.F., 1977, Inhibition of spinothalamic tract cells and interneurons by brain stem stimulation in the monkey, J. Neurophysiol., 40: 986–981.Google Scholar
  44. 44.
    Yaksh, T.L., 1979, Direct evidence that spinal serot-nin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray, Brain Res. 160: 180–185.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Allan I. Basbaum
    • 1
  1. 1.Department of AnatomyUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations