Serotonin pp 153-176 | Cite as

Role of the Raphe Nuclei in Stimulation Producing Analgesia

  • Jean-Marie Besson
  • Jean-Louis Oliveras
  • Athmane Chaouch
  • Jean-Paul Rivot
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 133)


There are now many studies demonstrating that electrical stimulation of certain regions of the brain stem produces analgesia in a variety of animals. After the original report of Reynolds1 showing that stimulation of the periaqueductal gray matter (PAG) produced analgesia in the rat these observations were confirmed and extended to other species, the cat, monkey and man (see refs in 2,3,4,5). The majority of the studies mostly in the rat, were concerned with the PAG and neighbouring periventricular areas. However in our laboratory extensive mapping studies of over 300 stimulations sites in the chronic cat6,7,8,9,10,11,12 have extented over the whole brain stem between the mesencephalon and the medulla. These studies demonstrate the essential role of the serotonin containing raphé nuclei in these analgesic phenomena. In this paper we will successively consider :
  • these behavioral studies on stimulation produced analgesia and

  • electrophysiological studies on the neural correlates of the analgesia observed in the chronic experiments.


Analgesic Effect Dorsal Horn Raphe Nucleus Dorsal Raphe Nucleus Dorsal Horn Neurone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.V. Reynolds, Surgery in the rat during electrical analgesia induced by focal brain stimulation, Science 164: 444 (1969).PubMedCrossRefGoogle Scholar
  2. 2.
    J.C. Liebeskind, G. Giesler Jr. and G. Urca, Evidence pertaining to an endogenous mechanism of pain inhibition in the central nervous system, in: “Sensory functions of the skin in primates”, I. Zotterman, ed., Pergamon Press, Oxford (1976).Google Scholar
  3. 3.
    D.J. Mayer and D.D. Price, Central nervous system mechanisms of analgesia, Pain 2: 379 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    H.L. Fields and A.I. Basbaum, Brainstem control of spinal pain transmission neurons, Ann. Rev. Physiol. 40: 193 (1978).CrossRefGoogle Scholar
  5. 5.
    J.M. Besson, A.H. Dickenson, D. Le Bars and J.L. Oliveras, Opiate analgesia: the physiology and pharmacology of spinal pain systems, in: “Advances in pharmacology and therapeutics, vol. 5, Neuropsychopharmacology, C. Dumont, ed., Pergamon Press, Oxford (1979).Google Scholar
  6. 6.
    J.C. Liebeskind, G. Guilbaud, J.M. Besson and J.L. Oliveras, Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: behavioral observations and inhibitory effects on spinal cord interneurons, Brain Res. 50: 441 (1973).PubMedCrossRefGoogle Scholar
  7. 7.
    J.L. Oliveras, J.M. Besson, G. Guilbaud and J.C. Liebeskind, Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat, Exp. Brain Res. 20: 32 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    J.L. Oliveras, A. Woda, G. Guilbaud and J.M. Besson, Inhibition of the jaw opening reflex by electrical stimulation of the periaqueductal gray matter in the awake, unrestrained cat, Brain Res. 72: 328 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    J.L. Oliveras, F. Redjemi, G. Guilbaud and J.M. Besson, Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphé in the cat, Pain 1: 139 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    J.L. Oliveras, Y. Hosobuchi, F. Redjemi, G. Guilbaud and J.M. Besson, Opiate antagonist, naloxone, strongly reduces analgesia induced by stimulation of a raphé nucleus (centralis inferior), Brain Res. 120: 221 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    J.L. Oliveras, Y. Hosobuchi, G. Guilbaud and J.M. Besson, Analgesia by electrical stimulation of the feline nucleus raphé magnus: development of tolerance and its reversal by 5-HTP, Brain Res. 146: 404 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    J.L. Oliveras, G. Guilbaud and J.M. Besson, A map of serotoninergic structures involved in stimulation producing analgesia in unrestrained freely moving cats, Brain Res. 164: 317 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    A.L. Berman, “The brain stem of the cat. A cytoarchitectonic atlas with stereotaxic coordinates”, Univ. of Wisconsin Press, Madison, Wisc. (1968).Google Scholar
  14. 14.
    D.J. Mayer, T.L. Wolfe, H. Akil, B. Carder and J.C. Liebeskind, Analgesia from electrical stimulation in the brainstem of the rat, Science 174: 1351 (1971).PubMedCrossRefGoogle Scholar
  15. 15.
    D.J. Mayer and J.C. Liebeskind, Pain reduction by focal electrical stimulation of the brain: an anatomical and behavioral analysis, Brain Res. 68: 73 (1974).PubMedCrossRefGoogle Scholar
  16. 16.
    J.L. Oliveras, Y. Hosobuchi, J. Bruxelle, C. Passot and J.M. Besson, Analgesic effects induced by electrical stimulation of the nucleus raphé magnus in the rat: interaction with morphine analgesia, in: “Abstracts 7th international Congress of Pharmacology”, (Paris), vol.1, n°280 (1978).Google Scholar
  17. 17.
    D.J. Mayer and R. Hayes, Stimulation-produced analgesia: development of tolerance and cross-tolerance to morphine, Science 188: 941 (1975).PubMedCrossRefGoogle Scholar
  18. 18.
    Y. Hosobuchi, J.E. Adams and R. Linchitz, Pain relief by electrical stimulation of central gray matter in humans, and its reversal by naloxone, Science 197: 183 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    Y. Hosobuchi, Tryptophan reversal of tolerance to analgesia induced by central gray stimulation, Lancet 2: 47 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    C. Pert, M. Kuhar and S. Snyder, The opiate receptor: auto-radiographic localization in rat brain, Proc. Nat. Acad. Sci. (Wash.), 73: 3729 (1976).CrossRefGoogle Scholar
  21. 21.
    S.F. Atweh and M.J. Kuhar, Autoradiographic localization of opiate receptors in rat brain. II - The brain stem. Brain Res. 129: 1 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Hökfelt, A. Ljungdahl, L. Terenius, R. Elde and G. Nilsson, Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: enkephalin and substance P, Proc. Nat. Acad. Sci. (Wash.), 74: 3081 (1977).CrossRefGoogle Scholar
  23. 23.
    M. Sar, W.E. Stumpf, R.J. Miller, K.J. Chang and P. Cuatrecasas, Immunohistochemical localization of enkephalin in rat brain andspinal cord, J. Comp. Neurol. 182: 17 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    G.R. Uhl, R.R. Goodman, M.J. Kuhar, S.R. Childers and S.H. Snyder, Immunohistochemical mapping of enkephalin containing cell bodies, fibers and nerve terminals in the brain-stem of the rat, Brain Res. 166: 75 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    T.L. Yaksh and T.A. Rudy, Narcotic analgetics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques, Pain 4: 299 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    A.H. Dickenson, J.L. Oliveras and J.M. Besson, Role of the nucleus raphé magnus in opiate analgesia as studied by the microinjection technique in the rat, Brain Res. 170: 95 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Akil, D.J. Mayer and J.C. Liebeskind, Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist, Science 191: 961 (1976).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Pert and M. Walter, Comparison between naloxone reversal of morphine and electrical stimulation induced analgesia in the rat mesencephalon, Life Sciences 19: 1023 (1976).PubMedCrossRefGoogle Scholar
  29. 29.
    T.L. Yask, J.C. Young and T.A. Rudy, An inability to antagonize with naloxone the elevated nociceptive thresholds resulting from electrical stimulation of the mesencephalic central gray, Life Sciences 18: 1193 (1976).CrossRefGoogle Scholar
  30. 30.
    G.F. Gebhart and J.R. Toleikis, An evaluation of stimulation produced analgesia in the cat, Exp. Neurol. 62: 570 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    J.E. Adams, Naloxone reversal of analgesia produced by brain stimulation in the human, Pain 2: 161 (1976).PubMedCrossRefGoogle Scholar
  32. 32.
    D.E. Richardson and H. Akil, Pain reduction by electrical brain stimulation in man: chronic self-stimulation in the periaqueductal gray matter, J. Neurosurg. 47: 184 (1977).PubMedCrossRefGoogle Scholar
  33. 33.
    H. Akil, D.E. Richardson, J.D. Barchas and C.H. Li, Appearance of IS-endorphin-like immunoreactivity in human ventricular cerebrospinal fluid upon analgesic electrical stimulation, Proc. Nad. Acad. Sci. (Wash.), 75: 5170 (1978).CrossRefGoogle Scholar
  34. 34.
    Y. Hosobuchi, J. Rossier, F.E. Bloom and R. Guillemin, Stimulation of human periaqueductal gray for pain relief increase immunoreactive beta-endorphin in ventricular fluid, Science 201: 279 (1979).CrossRefGoogle Scholar
  35. 35.
    H. Akil, D.E. Richardson, J. Hugues and J.P. Barchas, Enkephalinlike material elevated in ventricular cerebrospinal fluid of pain patients after analgesic focal stimulation, Science 201: 463 (1978).PubMedCrossRefGoogle Scholar
  36. 36.
    R.B. Messing and L.D. Lytle, Serotonin containing neurons:their possible role in pain and analgesia, Pain 4: 1 (1977).PubMedCrossRefGoogle Scholar
  37. 37.
    S.S. Tenen, Antagonism of the analgesic effect of morphine and other drugs by p-chlorophenylalanine, a serotonin depletor, Psychopharmacol. (Berl.), 12: 278 (1968).CrossRefGoogle Scholar
  38. 38.
    W.L. Dewey, L.S. Harris, J.F. Howes and J.A. Nuite, The effect of various neurohumoral modulators on the activity of morphine and the narcotic antagonists in the tail-flick and phenyl-quinone tests, J. Pharmacol. Exp. Ther. 175: 435 (1970).PubMedGoogle Scholar
  39. 39.
    J.R. Lee and M.R. Fennessy, The relationship between morphine analgesia and the levels of biogenic amines in the mouse brain, Europ. J. Pharmacol. 12: 65 (1970).Google Scholar
  40. 40.
    M. Vogt, The effect of lowering the 5-hydroxytryptamine content of the rat spinal cord on analgesia produced by morphine, J. Physiol. (Lond.), 236: 483 (1974).Google Scholar
  41. 41.
    H. Akil and D.J. Mayer, Antagonism of stimulation-produced analgesia by p-CPA, a serotonin synthesis inhibitor, Brain Res. 44: 692 (1972).PubMedCrossRefGoogle Scholar
  42. 42.
    T.L. Yaksh, J. Du Chateau and T.A. Rudy, Antagonism by methysergide and cinanserin of the antinociceptive action of morphine administered into the periaqueductal gray, Brain Res. 104: 367 1976 ).PubMedCrossRefGoogle Scholar
  43. 43.
    R. Samanin, M. Gumulka and L. Valzelli, Reduced effect of morphine in midbrain raphé lesioned rats, Europ. J. Pharmacol. 10: 339 (1970).Google Scholar
  44. 44.
    L. Garau, M.L. Mulas and G. Pepeu, The influence of raphé lesions on the effect of morphine on nociception and cortical Ach output, Neuropharmacology 14: 259 (1975).PubMedCrossRefGoogle Scholar
  45. 45.
    M. Sasa, K. Munekiyo, Y. Osumi and S. Takaori, Attenuation of morphine analgesia in rats with lesions of the locus coeruleus and dorsal raphé nucleus, Europ. J. Pharmacol. 42: 53 (1977).Google Scholar
  46. 46.
    T.L. Yaksh, R.L. Plant and T.A. Rudy, STudies of the antagonism by raphé lesions of the antinociceptive action of systemic morphine, Eur. J. Pharmacol. 41: 399 (1977).PubMedCrossRefGoogle Scholar
  47. 47.
    H.K. Proudfit and E.G. Anderson, Morphine analgesia: blockade by raphé magnus lesions, Brain Res. 98: 612 (1975).PubMedCrossRefGoogle Scholar
  48. 48.
    A.I. Basbaum, C.H. Clanton and H.L. Fields, Opiate and stimulus produced analgesia: functional anatomy of a medullospinal pathway, Proc. NatL Acad. Sci. (USA) 73: 4685 (1976).Google Scholar
  49. 49.
    A.I. Basbaum, N.J.E. Marley, J. O’Keefe and C.H. Clanton, Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions, Pain 3: 43 (1977).PubMedCrossRefGoogle Scholar
  50. 50.
    E. Genovese, N. Zonta and P. Mantegazza, Decreased antinociceptive activity of morphine in rats pretreated intraventricularly with 5,6-dihydroxytryptamine a long-lasting selective depletor of brain serotonin, Psychopharmacol.(Berl) 32: 359 (1973).CrossRefGoogle Scholar
  51. 51.
    J. Weil-Fugazza, F. Godefroy and J.M. Besson, ihanges in brain and spinal tryptophan and 5-hydroxyindoleacetic acid levels following acute morphine administration in normal and arthritic rats, Brain Res. (in press).Google Scholar
  52. 52.
    S. Bourgoín, J. Bruxelle, J.L. Oliveras, J.M. Besson, M. Hamon, Accelerated turn-over of spinal 5-HT by electrical stimulation of the posterior raphé nuclei in the rat, Abstract of the Satellite Symposium of the International Society for Neurochemistry: Serotonin (Athens, 1979 ).Google Scholar
  53. 53.
    J.F.W. Deakin, A.H. Dickenson and J.O. Dostrowsky, Morphine effects on rat raphé magnus neurons, J. Physiol. (Lond.), 267: 43 (1977).Google Scholar
  54. 54.
    H.L. Fields and S.D. Anderson, Evidence that raphé-spinal neurons mediate opiate and midbrain stimulation-produced analgesia, Pain 5: 333 (1978).PubMedCrossRefGoogle Scholar
  55. 55.
    T.D. Oleson, D.A. Twombly and J.C. Liebeskind, Effects of pain-attenuating brain stimulation and morphine on electrical activity in the raphé nuclei of the awake rat, Pain 4: 211 (1978).PubMedCrossRefGoogle Scholar
  56. 56.
    W.D. Willis and R.E. Coggeshall, Sensory mechanisms of the spinal cord, Plenum Press. New York (1978).Google Scholar
  57. 57.
    P.D. Wall, The laminar organization of dorsal horn and effects of descending impulses, J. Physiol. (Lond.) 188: 403 (1967).Google Scholar
  58. 58.
    E. Carstens, T. Yokota and M. Zimmermann, Inhibition of spinal neuronal responses to noxious skin testing by stimulation of mesencephalic periacqueductal gray in the cat, J. Neurophysiol. 42: 558 (1979).PubMedGoogle Scholar
  59. 59.
    A.W. Duggan and B.T. Griersmith, Inhibition of the spinal transmission of nociceptive information by supraspinal stimulation in the cat, Pain 6: 149 (1979).PubMedCrossRefGoogle Scholar
  60. 60.
    B.J. Sessle, R. Dubner, L.F. Greenwood and G.E. Lucier, Descending influences of periaqueductal gray matter and somatosensory cerebral cortex on neurones in trigeminal brain stem nuclei, Canad. J. Physiol. Pharmacol. 54: 66 (1976).CrossRefGoogle Scholar
  61. 61.
    T. Yokota and S. Hashimoto, Periaqueductal gray and tooth pulp afferent interaction on units in caudal medulla oblongata, Brain Res. 117: 508 (1976).PubMedCrossRefGoogle Scholar
  62. 62.
    T.A. Lovick, D.C. West and J.H. Wolstencroft, Interactions between brain stem ranhé nuclei and the trigeminal nuclei, in: “Pain in the trigeminal region”, Anderson and Matthews, eds., Elsevier/North-Holland, Amsterdam (1977).Google Scholar
  63. 63.
    G.K. Aghajanian, W.E. Foote and M.H. Sheard, Lysergic diethylamide: sensitive neuronal units in the midbrain raphé, Science 161: 706 (1968).PubMedCrossRefGoogle Scholar
  64. 64.
    G. Guilbaud, J.M. Besson, J.L. Oliveras and J.C. Liebeskind, Suppression by LSD of the inhibitory effect exerted by dorsal raphé stimulation on certain spinal cord interneurons in the cat, Brain Res. 61: 417 (1973).PubMedCrossRefGoogle Scholar
  65. 65.
    R.L. Hayes, P.G. Newlon, J.A. Rosecrans and D.J. Mayer, Reduction of stimulation-produced analgesia by lysergic acid diethylamide a depressor of serotonergic neural activity, Brain Res. 122: 367 (1977).PubMedCrossRefGoogle Scholar
  66. 66.
    T.J. Morrow and K.L. Casey, Analgesia produced by mesencephalic stimulation: effect on bulboreticular neurons, in: “Advances in pain research and therapy”, J.J. Bonica and D. Albe-Fessard, eds., Raven Press, New-York (1976).Google Scholar
  67. 67.
    H.G.J.M. Kuypers and V.A. Maisky, Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat, Neurosci. Lett. 1: 9 (1975).PubMedCrossRefGoogle Scholar
  68. 68.
    M.A. Ruda, Autoradiographie examination of the efferent projections of the midbrain central gray in the cat, Ph. D. Dissertation, University of Pennsylvania (1976).Google Scholar
  69. 69.
    D.W. Gallager and A. Pert, Afferents to brain stem nuclei (brain stem raphé, nucleus reticularis pontis caudalis and nucleus gigantocellularis) in the rat as demonstrated by microiontophoretically applied horseradish peroxydase, Brain Res. 144: 257 (1978).PubMedCrossRefGoogle Scholar
  70. 70.
    E. Taber-Pierce, W.E. Foote and J.A. Hobson, The efferent connection of the nucleus raphé dorsalis, Brain Res. 107: 137 (1976)CrossRefGoogle Scholar
  71. 71.
    T.A. Lovick, D.C. West and J.H. Wolstencroft, Responses of raphé spinal and other bulbar raphé neurones to stimulation of the periaqueductal gray in the cat, Neurosci. Lett. 8: 45 (1978).Google Scholar
  72. 72.
    A. Brodai, E. Taber and F. Walberg, The raphé nuclei of the brain stem in the cat: II - Efferent connections. J. Comp. Neurol. 114: 239 (1960).CrossRefGoogle Scholar
  73. 73.
    A. Dahlström and K. Fuxe, Evidence for the existence of monoamine neuron in the central nervous system. II - Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. 247:5, suppl. 64 (1965).Google Scholar
  74. 74.
    P. Bobillier, S. Seguin, F. Petitjean, D. Salvert, M. Touret and M. Jouvet, The raphé nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography, Brain Res. 113: 449 (1976).PubMedCrossRefGoogle Scholar
  75. 75.
    A.I. Basbaum, C.H. Clanton and H.L. Fields, Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems, J. Comp. Neurol. 178: 209 (1978).PubMedCrossRefGoogle Scholar
  76. 76.
    G.R. Leichnetz, L. Watkins, G. Griffin, R. Martin and D.J. Mayer The projection from nucleus raphé magnus and other brain stem nuclei to the spinal cord in the rat: a study using HRP blue reaction, Neurosci. Lett. 8: 119 (1978).CrossRefGoogle Scholar
  77. 77.
    R.F. Martin, L.M. Jordan and W.D. Willis, Differential projections of cat medullary raphé neurons demonstrated by retrograde labelling following spinal cord lesions, J. Comp. Neurol. 182: 77 (1978).PubMedCrossRefGoogle Scholar
  78. 78.
    A. Lundberg, Supraspinal control of transmission in reflex paths to motoneurones and primary afferents, in: “Progress in Brain Research, vol. 12, Physiology of spinal neurons, J.C. Eccles and P. Schadé, eds., Elsevier, Amsterdam (1964).Google Scholar
  79. 79.
    D. Le Bars, D. Menétrey, C. Conseiller et J.M. Besson, Comparaison chez le chat spinal et le chat décérébré, des effets de la morphine sur les activités des interneurones de type V de la corne dorsale de la moelle, C.R. Acad. Sci. (Paris), 279: 1369 (1974).Google Scholar
  80. 80.
    H.L. Fields, A.I. Basbaum, C.H. Clanton and S.D. Anderson, Nucleus raphé magnus inhibition of spinal cord dorsal horn neurons, Brain Res. 126: 441 (1977).PubMedCrossRefGoogle Scholar
  81. 81.
    G. Guilbaud, J.L. Oliveras, G. Giesler Jr. and J.M. Besson, Effects induced by stimulation of the centralis inferior nucleus of the raphé on dorsal horn interneurons in cat’s spinal cord, Brain Res. 126: 355 (1977).PubMedCrossRefGoogle Scholar
  82. 82.
    G. Belcher, R.W. Ryall and R. Schaffner, The differential effects of 5-hydroxytryptamine, noradrenaline and raphé stimulation on nociceptive and non-nociceptive horn interneurones in the cat, Brain Res. 151: 307 (1978).PubMedCrossRefGoogle Scholar
  83. 83.
    D.B. Mc Creery, J.R. Bloedel and E.G. Hames, Effects of stimulating in raphé nuclei and in reticular formation on response of spinothalamic neurons to mechanical stimuli, J. Neurophysiol. 42: 166 (1979).Google Scholar
  84. 84.
    J.A. Beal, R.F. Martin, A.E. Applebaum and W.D. Willis, Inhibition of primate spinothalamic tract neurons by stimulation in the region of nucleus raphé magnus, Brain Res. 114: 328 (1976).CrossRefGoogle Scholar
  85. 85.
    W.D. Willis, L.H. Haber and R.F. Martin, Inhibition of spino-thalamic tract cells and interneurons by brainstem stimulation in the monkey, J. Neurophysiol. 40: 968 (1977).PubMedGoogle Scholar
  86. 86.
    J.P. Rivot, A. Chaouch and J.M. Besson, The influence of naloxone on the C fiber response of dorsal horn neurons and their inhibitory control by raphé magnus stimulation, Brain Res. (1979) (in press).Google Scholar
  87. 87.
    J.P. Rivot, A. Chaouch et J.M. Besson, Caractéristiques électrophysiologiques et pharmacologiques du contrôle exercé par le noyau raphé magnus sur la transmission spinale des messages nociceptifs, J. Physiol. (Paris) (1979), (in press).Google Scholar
  88. 88.
    E.E. Fetz, Pyramidal tract effects on interneurons in cat lumbar dorsal horn, J. Neurophysiol. 31: 69 (1968).PubMedGoogle Scholar
  89. 89.
    L.H. Haber, R.F. Martin, A.B. Chatt and W.D. Willis, Effects of stimulation in nucleus reticularis gígantocellularis on the activity of spinothalamic tract neurons in the monkey, Brain Res. 153: 163 (1978).PubMedCrossRefGoogle Scholar
  90. 90.
    J.W. Hu and B.J. Sessle, Trigeminhl nociceptive and non nociceptive neurones: brain stem intranuclear projections and modulation by orofacial, periacqueductal and nucleus raphé magnus stimuli, Brain Res. 170: 547 (1979).PubMedCrossRefGoogle Scholar
  91. 91.
    D. Menétrey, A. Chaouch and J.M. Besson, Location and properties of lumbar spinoreticular tract neurons in the rat, Neurosci. Lett., suppl. 3, S262 (1979).Google Scholar
  92. 92.
    J.L. Oliveras, S. Bourgoin, F. Héry, J.M. Besson and M. Hamon, The topographical distribution of serotoninergic terminals in the spinal cord of the cat: biochemical mapping by the combined use of microdissection and microassay procedures, Brain Res. 138: 393 (1977).PubMedCrossRefGoogle Scholar
  93. 93.
    A.G. Brown, E.J. Kirk and H.F. Martin III, Descending inhibition of transmission trough the spinocervical tract, J. Physiol. (tond.) 230: 689 (1973).Google Scholar
  94. 94.
    A.G. Brown, W.C. Haman and H.F. Martin III, Descending influences on spinocervical tract cell discharges evoked by nonmyelinated cutaneous afferent nerve fibres, Brain Res. 53: 218 (1973).PubMedCrossRefGoogle Scholar
  95. 95.
    T.A. Lovick, D.C. West and J.H. Wolstencroft, A presynaptic action of the raphé on tooth pulp fibre terminals: is this mediated by an opioid peptide ? in: “Characteristics and functions of opioides;J M. Van Ree,L. Terenius, eds., ElsevierNorth/Holland, 175 (1978).Google Scholar
  96. 96.
    R.F. Martin, L.H. Haber and W.D. Willis, Primary afferent depolarization of identified cutaneous fibers following stimulation in medial brain stem, J. Neurophysiol. 42: 779 (1979).PubMedGoogle Scholar
  97. 97.
    H.K. Proudfit and E.G. Anderson, New long latency bulbospinal evoked potentials blocked by serotonin antagonists, Brain Res. 65: 542 (1974).PubMedCrossRefGoogle Scholar
  98. 98.
    I. Engberg, A. Lundberg and R.W. Ryall, Reticulospinal inhibition of transmission in reflex pathways, J. Physiol. (Lond)., 194: 201 (1968).Google Scholar
  99. 99.
    I. Engberg, A. Lundberg and R.W. Ryall, Is the tonic decerebrate inhibition of reflex paths mediated by monoaminergic pathways ? Acta Physiol. Scand. 72: 123 (1968).Google Scholar
  100. 100.
    N.E. Anden, M.G.M. Jukes and A. Lundberg, Spinal reflexes and monoamine liberation, Nature 202: 1222 (1964).PubMedCrossRefGoogle Scholar
  101. 101.
    N.R. Banna and E.G. Anderson, The effects of 5-hydroxytryptamine antagonists on spinal neuronal activity, J. Pharmacol. Exp. Therap. 162: 319 (1968).Google Scholar
  102. 102.
    S.D. Anderson, A.I. Basbaum and H.L. Fields, Response of medullary raphé magnus neurons to peripheral stimulation and the systemic opiates, Brain Res. 123: 363 (1977).PubMedCrossRefGoogle Scholar
  103. 103.
    D.C. West and J.H. Wolstencroft, Electorphysiological identification of raphé spinal neurones in the cat, J. Physiol. (Lond.) 29: 265P (1977).Google Scholar
  104. 104.
    G.K. Aghajanian and R.Y. Wang, Physiology and pharmacology of central serotonergic neurons, in: “Psychopharmacology: a generation of progress”, M.A. Lipton, A. DiMascio and K.F. Killamn eds., Raven Press, New-York (1978).Google Scholar
  105. 105.
    M. Randic and H.H. Yu, Effects of 5-hydroxytryptamine and bradykinin in cat dorsal horn neurones activated by noxious stimuli, Brain Res. 111: 197 (1976).PubMedCrossRefGoogle Scholar
  106. 106.
    P.M. Headley, A.W. Duggan and B.T. Griersmith, Selective reduction by noradrenaline and 5-hydroxytryptamine of cat dorsal horn neurones, Brain Res. 145: 185 (1978).PubMedCrossRefGoogle Scholar
  107. 107.
    L.M. Jordan, D.R. Kenshalo, R.F. Martin, L.H. Haber and W.D. Willis, Depression of primate spinothalamic tract neurons by iontophoretic application of 5-hydroxytryptamine, Pain 5: 135 (1978).PubMedCrossRefGoogle Scholar
  108. 108.
    L.M. Jordan, D.R. Kenshalo, R.F. Martin, L.H. Haber and W.D. Willis, Two populations of spinothalamic tract neurons with opposite responses to 5-hydroxytryptamine, Brain Res. 164: 342 (1979).PubMedCrossRefGoogle Scholar
  109. 109.
    D. Le Bars, J.P. Rivot,G. Guilbaud, D. Menétrey and J.M.Besson,The depressive effect of morphine on the C fibre response of dorsal horn neurones in the spinal rat pretreated or not by p-CPA, Brain Res. (1979) (in press).Google Scholar
  110. 110.
    T. Hökfelt, A. Ljungdahl, H.Steinbusch, A. Verhofstad, G. Nilsson, E. Brodin, B. Pernow and M. Goldstein, Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine containing neurons in the rat central neurons systems, Neuroscience 3: 517 (1978).PubMedCrossRefGoogle Scholar
  111. 111.
    J.L. Henry, Effects of substance P on functionally identified units in cat spinal cord, Brain Res. 114: 439 (1976).PubMedCrossRefGoogle Scholar
  112. 112.
    M. Randic and V. Miletic, Effect of substance P in cat dorsal horn neurones activated by noxious stimuli, Brain Res. 128: 164 (1977).PubMedCrossRefGoogle Scholar
  113. 113.
    R.K. Andersen, J.P. Lund and E. Puil, Enkephalin and substance P effects related to trigeminal pain, Can. J. Physiol. Pharmacol. 56: 216 (1978).PubMedCrossRefGoogle Scholar
  114. 114.
    R. Melzack and P.D. Wall, Pain mechanisms: a new theory. Science 150: 971 (1965)PubMedCrossRefGoogle Scholar
  115. 115.
    E. Carstens, D. Klumpp and M. Zimmermann, The opiate antagonist, Naloxone, does not affect descending inhibition from midbrain of nociceptive spinal neuronal discharges in the cat, Neurosci. Lett. 11: 323 (1979).Google Scholar
  116. 116.
    G.M. Moolenar, J.A. riolloway and C.O. Trouth, Responses of caudal raphé neurons to peripheral somatic stimulation, Exp. Neurol. 53: 304 (1976).CrossRefGoogle Scholar
  117. 117.
    G. Guilbaud, M. Peschanski and M. Gautron, Responses of neurons in the nucleus raphé magnus and adjacent structures to non-noxious and noxious stimuli in intact rht (in preparation).Google Scholar
  118. 118.
    F.D. Anderson and C.H. Berry, Degeneration studies of long descending fibers systems in the cat brain stem, J. Comp. Neurol. 111: 195 (1959).PubMedCrossRefGoogle Scholar
  119. 119.
    L.C.A. Conrad, C.M. Leonard and D.W. Pfaff, Connections of the median and dorsal raphé nuclei in the rat: an autoradiographic and degeneration study, J. Comp. Neurol. 156: 179 (1974).PubMedCrossRefGoogle Scholar
  120. 120.
    S.B. Edwards, Autoradiographic studies of the projections of the midbrain reticular formation: descending projections of nucleus cuneiformis, J. Comp. Neurol. 161: 341 (1975).PubMedCrossRefGoogle Scholar
  121. 121.
    N.S. Chu and F.E. Bloom, The catecholamine-containing neurons in the cat dorsolateral pontine segmentum: distribution of the cell bodies and some axonal projections, Brain Res. 66: 1 (1974).CrossRefGoogle Scholar
  122. 122.
    K. Sakai, M. Touret, D. Salvert, L. Léger and M. Jouvet, Afferent projections to the cat locus coeruleus as visualized by the horseradish peroxidase technique, Brain Res. 119: 21 (1977).PubMedCrossRefGoogle Scholar
  123. 123.
    D. Le Bars, A.H. Dickenson and J.M. Besson, Diffuse noxious inhibitory controls (DNIC). I - Effects on dorsal horn convergent neurones in the rat, Pain 6: 283 (1979).PubMedCrossRefGoogle Scholar
  124. 124.
    D. Le Bars, A.H. Dickenson and J.M. Besson, Diffuse noxious inhibitory controls (DNIC) II - Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications, Pain 6: 305 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Jean-Marie Besson
    • 1
  • Jean-Louis Oliveras
    • 1
  • Athmane Chaouch
    • 1
  • Jean-Paul Rivot
    • 1
  1. 1.Unité de Recherches de Neurophysiologie PharmacologiqueI.N.S.E.R.M., Unité 161ParisFrance

Personalised recommendations