Serotonin pp 105-123 | Cite as

Effects of Peripherally and Centrally Administered Serotonin on Primate Spinothalamic Neurons

  • W. D. Willis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 133)


Serotonin has actions at several different levels of the neural system responsible for nociception. When injected into the arterial circulation of a muscle, serotonin excites small myelinated and unmyelinated fibers supplying nociceptors (Mense & Schmidt, 1974; Fock & Mense, 1976; Mense, 1977). Serotonin is thus an algesic agent in terms of its peripheral action. By contrast, serotonin is thought to be one of the synaptic transmitters in the central nervous system pathways that mediate stimulation-produced analgesia (Akil & Mayer, 1972; Akil & Liebeskind, 1975; Yaksh, 1979; Yaksh & Wilson, 1979).


Receptive Field Dorsal Horn Spinothalamic Tract Iontophoretic Application Cutaneous Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akil, H. and J.C. Liebeskind, Monoaminergic mechanisms of stimulation-produced analgesia, Brain Res., 94: 279–296 (1975).PubMedCrossRefGoogle Scholar
  2. Akil, H. and D.J. Mayer, Antagonism of stimulation-produced analgesia by p-CPA, a serotonin synthesis inhibitor, Brain Res., 44: 692–697 (1972).PubMedCrossRefGoogle Scholar
  3. Applebaum, A.E., Beall, J.E., Foreman, R.D. and W.D. Willis, Organi-zation and receptive fields of primate spinothalamic tract neurons, J. Neurophysiol., 38: 572–586 (1975).PubMedGoogle Scholar
  4. Basbaum, A.I., Clanton, C.H. and H.L. Fields, Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems, J. Comp. Neur., 178: 209–224 (1978).PubMedCrossRefGoogle Scholar
  5. Basbaum, A.I., Marley, N.J.E., O’Keefe, J. and C.H. Clanton, Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions, Pain, 3: 43–56 (1977).PubMedCrossRefGoogle Scholar
  6. Beck, P.W. and H.O. Handwerker, Bradykinin and serotonin effects on various types of cutaneous nerve fibres, Pflueg. Arch., 347: 209–222 (1974).CrossRefGoogle Scholar
  7. Belcher, G., Ryall, R.W. and R. Schaffner, The differential effects of 5-hydroxytryptamine, noradrenaline and raphe stimulation on nociceptive and nonnociceptive dorsal horn interneurons in the cat, Brain Res., 151: 307–321 (1978).PubMedCrossRefGoogle Scholar
  8. Christensen, B.N. and E.R. Perl, Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn, J. Neurophysiol., 33: 293–307 (1970).PubMedGoogle Scholar
  9. Chung, J.M., Kenshalo, D.R., Jr., Gerhart, K.D. and W.D. Willis, Excitation of primate spinothalamic neurons by cutaneous C-fiber volleys, J. Neurophysiol., 42: 1354–1369 (1979).PubMedGoogle Scholar
  10. Dahlström, A and K. Fuxe, Evidence for the existence of monoamine neurons in the central nervous system, Acta physiol. Scand., 64, Suppl. 247, 5–36 (1965).Google Scholar
  11. Engberg, I. and R.W. Ryall, The inhibitory action of noradrenaline and other monoamines on spinal neurones, J. Physiol., 185: 298–322 (1966).PubMedGoogle Scholar
  12. Fields, H.L., Basbaum, A.I., Clanton, C.H. and S.D. Anderson, Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons, Brain Res., 126: 441–453 (1977).PubMedCrossRefGoogle Scholar
  13. Fock, S. and S. Mense, Excitatory effects of 5-hydroxytryptamine, histamine and potassium ions on muscular group IV afferent units: a comparison with bradykinin, Brain Res., 105: 459–469 (1976).PubMedCrossRefGoogle Scholar
  14. Foerster, O. and O. Gagel, Die Vorderseitenstrangdurchschneidung beim Menschen. Eine klinisch-patho-physiologisch-anatomische Studie, Z. Ges. Neurol. Psychiat., 138: 1–92 (1932).CrossRefGoogle Scholar
  15. Foreman, R.D., Hancock, M.B. and W.D. Willis, Convergence of visceral and cutaneous input onto spinothalamic tract neurons in the thoracic spinal cord of the Rhesus monkey, Neurosci. Abstr., 1: 148 (1975).Google Scholar
  16. Foreman, R.D., Kenshalo, D.R., Jr., Schmidt, R.F. and W.D. Willis, Field potentials and excitation of primate spinothalamic neurones in response to volleys in muscle afferents, J. Physiol., 286: 197–213 (1979).PubMedGoogle Scholar
  17. Foreman, R.D., Schmidt, R.F. and W.D. Willis, Convergence of muscle and cutaneous input onto primate spinothalamic tract neurons, Brain Res., 124: 555–560 (1977).PubMedCrossRefGoogle Scholar
  18. Foreman, R.D., Schmidt, R.F. and W.D. Willis, Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells, J. Physiol., 286: 215–231 (1979).PubMedGoogle Scholar
  19. Guilbaud, G., Besson, J.M., Oliveras, J.L. and J.C. Liebeskind, Suppression by LSD of the inhibitory effect exerted by dorsal raphe stimulation on certain spinal cord interneurons in the cat, Brain Res., 61: 417–422 (1973).PubMedCrossRefGoogle Scholar
  20. Guilbaud, G., Oliveras, J.L., Giesler, G. and J.M. Besson, Effects induced by stimulation of the centralis inferior nucleus of the raphe on dorsal horn interneurons in cat’s spinal cord, Brain Res., 126: 355–360 (1977).PubMedCrossRefGoogle Scholar
  21. Haber, L.H., Martin, R.F., Chatt, A.B. and W.D. Willis, Effects of stimulation in nucleus reticularis gigantocellularis on the activity of spinothalamic tract neurons in the monkey, Brain Res., 153: 163–168 (1978).Google Scholar
  22. Hancock, M.B., Foreman, R.D. and W.D. Willis, Convergence of visceral and cutaneous input onto spinothalamic tract cells in the thoracic spinal cord of the cat, Exp. Neurol., 47: 240–248 (1975).PubMedCrossRefGoogle Scholar
  23. Headley, P.M., Duggan, A.W. and B.T. Griersmith, Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurones, Brain Res., 145: 185–189 (1978).PubMedCrossRefGoogle Scholar
  24. Hubbard, J.E. and V. DiCarlo, Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). III. Serotonin-containing groups, J. Comp. Neur., 153: 385–398 (1974).PubMedCrossRefGoogle Scholar
  25. Jordan, L.M., Kenshalo, D.R., Jr., Martin, R.F., Haber, L.H. and W.D. Willis, Depression of primate spinothalamic tract neurons by iontophoretic application of 5-hydroxytryptamine, Pain, 5: 135–142 (1978).PubMedCrossRefGoogle Scholar
  26. Jordan, L.M., Kenshalo, D.R., Jr., Martin, R.F., Haber, L.H. and W.D. Willis, Two populations of spinothalamic tract neurons with opposite responses to 5-hydroxytryptamine, Brain Res., 164: 342–346 (1979).PubMedCrossRefGoogle Scholar
  27. Kenshalo, D.R., Jr., Leonard, R.B., Chung, J.M. and W.D. Willis, Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli, J. Neurophysiol., 42: 1370–1389 (1979).PubMedGoogle Scholar
  28. Kumazawa, T., Perl, E.R., Burgess, P.R. and D. Whitehorn, Ascending projections from marginal zone (lamina I) neurons of the spinal dorsal horn, J. Comp. Neur., 162: 1–12 (1975).CrossRefGoogle Scholar
  29. Kuru, M., Sensory paths in the spinal cord and brain stem of man, Tokyo, Sogensya (1949).Google Scholar
  30. Lewis, T., Pain, New York, MacMillan (1942).Google Scholar
  31. Martin, R.F., Haber, L.H. and W.D. Willis, Primary afferent depolarization of identified cutaneous fibers following stimulation in medial brain stem, J. Neurophysiol., 42: 779–790 (1979).PubMedGoogle Scholar
  32. Martin, R.F., Jordan, L.M. and W.D. Willis, Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions, J. Comp. Neur., 182: 77–88 (1978).PubMedCrossRefGoogle Scholar
  33. Mayer, D.J. and D.D. Price, Central nervous system mechanisms of analgesia, Pain, 2: 379–404 (1976).PubMedCrossRefGoogle Scholar
  34. McCreery, D.B., Bloedel, J.R. and E.G. Names, Effects of stimulating in raphe nuclei and in reticular formation on response of spinothalamic neurons to mechanical stimuli, J. Neurophysiol., 42: 166–182 (1979).PubMedGoogle Scholar
  35. Mendell, L.M., Physiological properties of unmyelinated fiber pro-jection to the spinal cord, Exp. Neurol., 16: 316–332 (1966).PubMedCrossRefGoogle Scholar
  36. Mense, S., Nervous outflow from skeletal muscle following chemical noxious stimulation, J. Physiol., 267: 75–88 (1977).PubMedGoogle Scholar
  37. Mense, S. and R.F. Schmidt, Activation of group IV afferent units from muscle by algesic agents, Brain Res., 72: 305–310 (1974).PubMedCrossRefGoogle Scholar
  38. Oliveras, J.L., Guilbaud, G. and J.M. Besson, A map of serotoninergic structures involved in stimualtion producing analgesia in unrestrained freely moving cats, Brain Res., 164: 317–322 (1979).PubMedCrossRefGoogle Scholar
  39. Oliveras, J.L., Redjemi, F., Guilbaud, G. and J.M. Besson, Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat, Pain, 1: 139–145 (1975).PubMedCrossRefGoogle Scholar
  40. Price, D.D. and D.J. Mayer, Neurophysiological characterization of the anterolateral quadrant neurons subserving pain in M. mulatta, Pain, 1: 59–72 (1975).CrossRefGoogle Scholar
  41. Proudfit, H.K. and E.G. Anderson, New long latency bulbospinal evoked potentials blocked by serotonin antagonists, Brain Res., 65: 542–546 (1974).PubMedCrossRefGoogle Scholar
  42. Randic, M. and H.H. Yu, Effects of 5-hydroxytryptamine and bradykinin in cat dorsal horn neurones activated by noxious stimuli, Brain Res., 111: 197–203 (1976).PubMedCrossRefGoogle Scholar
  43. Ruda, M.A. and S. Gobel, Ultrastructural characterization of axonal endings in the substantia gelatinosa which take up [3H] serotonin, Brain Res., in press.Google Scholar
  44. Trevino, D.L., Coulter, J.D. and W.D. Willis, Location of cells of origin of spinothalamic tract in lumbar enlargement of the monkey, J. Neurophysiol., 36: 750–761 (1973).PubMedGoogle Scholar
  45. Weight, F.F. and G.C. Salmoirhaghi, Responses of spinal cord inter-neurons to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis, J. Pharmacol. Exp. Therap., 153: 420–427 (1966).Google Scholar
  46. White, J.C. and W.H. Sweet, Pain. Its Mechanisms and Neurosurgical Control, Springfield, Thomas, 1955.Google Scholar
  47. Willis, W.D., Haber, L.H. and R.F. Martin, Inhibition of spinothalamic tract cells and interneurons by brain stem stimulation in the monkey, J. Neurophysiol., 40: 968–981 (1977).PubMedGoogle Scholar
  48. Willis, W.D., Maunz, R.A., Foreman, R.D. and J.D. Coulter, Static and dynamic responses of spinothalamic tract neurons to mechanical stimuli, J. Neurophysiol., 38: 587–600 (1975).PubMedGoogle Scholar
  49. Willis, W.D., Trevino, D.L., Coulter, J.D. and R.A. Maunz, Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb, J. Neurophysiol., 37: 358–372 (1974).PubMedGoogle Scholar
  50. Yaksh, T.L., Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray, Brain Res., 160: 180–185 (1979).PubMedCrossRefGoogle Scholar
  51. Yaksh, T.L. and P.R. Wilson, Spinal serotonin terminal system mediates antinociception, J. Pharm. Exp. Therap., 208: 446–453 (1979).Google Scholar
  52. Yoss, R.E., Studies of the spinal cord. Part 3, Pathways for deep pain within the spinal cord and brain, Neurology, 3: 163–175 (1953).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • W. D. Willis
    • 1
  1. 1.Marine Biomedical Institue and Departments of Physiology & Biophysics and AnatomyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations