Serotonin pp 627-656 | Cite as

Hypersensitive Serotonergic Receptors: A New Hypothesis for One Subgroup of Unipolar Depression Derived from an Animal Model

  • M. H. Aprison
  • J. N. Hingtgen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 133)


Since the mid 1950’s, Aprison and co-workers have conducted studies on neurochemical-behavioral interactions of specific neurotransmitter systems in brain. These studies were expanded by Aprison, Ferster, Hingtgen and others to specifically include the cerebral serotonergic system. The data led to the conclusion that increases in the concentration of 5-hydroxytryptamine (5-HT or serotonin) in some serotonergic synaptic clefts cause behavioral suppression in animals. This pool of 5-HT is important from a physiological point of view and we have referred to it as the free 5-HT pool (Aprison and Hingtgen, 1972). Although our research involved animal behavior, our ultimate goal has always been to use such data to gain insights into possible biochemical mechanisms underlying certain types of abnormal human behavior. Thus, our studies have suggested a recently proposed theory (Aprison et al. 1978) that associates some forms of human depression with hypersensitive 5-HT receptors. In this paper, we expand on this hypothesis after presenting a brief review of some of the pertinent data, mainly from our own studies, which support this theory. Finally, we suggest specific ways in which the new theory could be clinically tested.


Depressed Patient Nerve Ending Synaptic Cleft Unipolar Depression Variable Interval Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angst, J.B., Woggon, J., and Schoepf, J., 1977, The treatment of depression with 5-hydroxytryptophan versus imipramine Result of two open and one double-blind study, Arch. fur Psychiat. und Nervenkrankheiten, 224: 175.Google Scholar
  2. Aprison, M.H., 1962, On a proposed theory for the mechanism of action of serotonin in brain, Recent Adv. Biol. Psychiat., 4: 133.CrossRefGoogle Scholar
  3. Aprison, M.H., 1965, Research approaches to problems in mental illness. Brain neurohumor-enzyme systems and behavior, in “Horizons in Neuropsychopharmacology”, W. Himwich and J. Schade, eds., Elsevier, Amsterdam.Google Scholar
  4. Aprison, M.H., 1977, Are some amino acid neurotransmitters involved in psychiatric disorders, in “Neuroregulators and Psychiatric Disorders”, E. Usdin, D. Hamberg and J. Barchas, eds., Oxford U. Press, New York.Google Scholar
  5. Aprison, M.H., and Ferster, C.B., 1960, Behavioral effects of 5-hydroxytryptophan, Experientia, 16: 159.PubMedCrossRefGoogle Scholar
  6. Aprison, M.H., and Ferster, C.B., 1961a, Neurochemical correlates of behavior. I. Quantitative measurement of the behavioral effects of the serotonin precursor, 5-hydroxytryptophan, J. Pharmaco. Exp. Ther., 131: 100.Google Scholar
  7. Aprison, M.H., and Ferster, C.B., 1961b, Neurochemical correlates of behavior. II. Correlation of brain monoamine oxidase activity with behavioral changes after iproniazid and 5-hydroxytryptophan administration, J. Neurochem., 6: 350.PubMedCrossRefGoogle Scholar
  8. Aprison, M.H., and Hingtgen, J.N., 1965, Neurochemical correlates of behavior. IV Norepinephrine and dopamine in four brain parts of the pigeon during period of atypical behavior following the injection of 5-hydroxytryptophan, J. Neurochem., 12: 959.PubMedCrossRefGoogle Scholar
  9. Aprison, M.H., and Hingtgen, J.N., 1966a, Neurochemical correlates of behavior. V. Differential drug effects on approach and avoidance behavior in rats with related changes in brain serotonin and norepinephrine, Recent Adv. Biol. Psychiat., 8: 87.Google Scholar
  10. Aprison, M.H., and Hingtgen, J.N., 1966b, Neurochemical correlates of behavior. VI. 5-hydroxytryptamine, norepinephrine, a-methyl-m-tyramines and 3, 4-dihydroxyphenylethylamine concentrations in pigeon brain during the period of atypical behavior following the injection of a-methylmeta-tyrosine, Life Sci., 5: 1071.CrossRefGoogle Scholar
  11. Aprison, M.H., and Hingtgen, J.N., 1970, Neurochemical correlates of behavior, Int. Rev. Neurobiol., 13: 325.CrossRefGoogle Scholar
  12. Aprison, M.H., and Hingtgen, J.N., 1972, Serotonin and behavior: A brief summary, Federation Proc., 31: 121.Google Scholar
  13. Aprison, M.H., Hingtgen, J.N., and McBride, W.J., 1975, Serotonergic and cholinergic mechanisms during disruption of approach and avoidance behavior, Federation Proc., 34: 1813.Google Scholar
  14. Aprison, M.H., and Takahashi, R., 1965, Biochemistry of the avian central nervous system II. 5-Hydroxytryptamine, acetylcholine, 3, 4-dihydroxyphenylethylamine and norepinephrine in several discrete areas of the pigeon brain, J. Neurochem., 12: 221.PubMedCrossRefGoogle Scholar
  15. Aprison, M.H., Takahashi, R., and Tachiki, K., 1978, Hypersensitive serotonergic receptors involved in clinical depression - A theory, in “Neuropharmacology and Behavior”, B. Haber and M.H. Aprison, eds., Springer Science+Business Media New York.Google Scholar
  16. Aprison, M.H., Wolf, M.A., Poulos, G.L., and Folkerth, T.L., 1962, Neurochemical correlates of behavior. III. Variation of serotonin content in several brain areas and peripheral tissues of the pigeon following 5-hydroxytryptophan administration, J. Neurochem., 9: 575.PubMedCrossRefGoogle Scholar
  17. Asberg, M., Bertilsson, L., Tuck, D., Cronholm, B., and Sjögvist, F., 1973, Indoleamine metabolites in the cerebrospinal fluid of depressed patients before and during treatment with nortriptyline, Clin. Pharmacol. Therap., 14: 279.Google Scholar
  18. Asberg, M., Thoren, P., Traskman, L., Bertilsson, L., and Ringberger, V., 1976, Serotonin depression. A biochemical subgroup within the affective disorders? Sci., 191: 478.CrossRefGoogle Scholar
  19. Bennett, J.P., and Snyder, S.H., 1976, Serotonin and lysergic acid diethylamide binding in rat brain membranes: relationship to postsynaptic serotonin receptors, Molec. Pharmac., 12: 373.Google Scholar
  20. Bowers, M.B., 1974, Lumbar CSF 5-hydroxyindoleacetic acid and homovanillic acid in affective syndromes, J. Nerv. Ment. Dis., 158: 325.PubMedCrossRefGoogle Scholar
  21. Brodie, H.K.H., Keith, H., Sack, R., and Siever, L., 1973, Clinical studies of L-5-hydroxytryptophan in depression, in “Serotonin and Behavior”, J. Barchas and E. Usdin, eds., Academic Press, New York.Google Scholar
  22. Bunney, W.E. Jr., Brodie, H.K.H., Murphy, D.L., and Goodwin, F.K., 1971, Studies of alpha-methyl-para-tyrosine, L-dopa, and tryptophan in depression and mania, Am. J. Psychiat., 127: 872.PubMedGoogle Scholar
  23. Carroll, B.J., Mowbray, R.M., and Davies, B.M., 1970, L-tryptophan in depression, Lancet, 2: 776.PubMedCrossRefGoogle Scholar
  24. Coppen, A., Prange, A.J. Jr., Whybrow, P.C., and Noguera, R., 1972, Abnormalities of indoleamine in affective disorders, Arch. Gen. Psychiat., 26: 474.PubMedCrossRefGoogle Scholar
  25. Coppen, A., Prange, A.J. Jrs., Whybrow, P.C., Noguera, R., and Paez, J.M., 1969, Methysergide in mania, Lancet, 2: 338.PubMedCrossRefGoogle Scholar
  26. Court, J.H., and Mai, F.M., 1970, A double-blind intensive design trial of methysergide in mania, Med. J. Aust., 2: 526.PubMedGoogle Scholar
  27. Cremata, V.Y., Jr., and Koe, B.K., 1966, Clinical-pharmacological evaluation of p-chlorophenylalanine: A new serotonin depleting agent, Clin. Pharmacol. Ther., 7: 768.PubMedGoogle Scholar
  28. Edwards, D.J., and Blau, K., 1972, The in vivo formation of p-chloro-ß-phenylethylanine in young rats injected with p-chlorophenylalanine, J. Neurochem., 19: 1829.PubMedCrossRefGoogle Scholar
  29. Engleman, K., Lovenberg, W., and Sjoerdsma, A., 1967, Inhibition of serotonin synthesis by para-chlorophenylalanine in patients with the carcinoid syndrome, N. Engl. J. Med., 277: 1103.CrossRefGoogle Scholar
  30. Fernstrom, J.D., and Faller, D.V., 1978, Neutral amino acids in the brain: Changes in response to food ingestion, J. Neurochem., 30: 1531.PubMedCrossRefGoogle Scholar
  31. Fernstrom, J.D., and Wurtman, R.J., 1971, Brain serotonin content: increase following ingestion of carbohydrate diet, Sci., 174: 1023.CrossRefGoogle Scholar
  32. Fernstrom, J.D. and Wurtman, R.J., 1972, Brain serotonin content: Physiological regulation by plasma neutral amino acids, Sci., 178: 414.CrossRefGoogle Scholar
  33. Fleisher, L.N., Simon, J.R., and Aprison, M.H., 1979, A biochemical-behavioral model for studying serotonergic supersensitivity innbrain, J. Neurochem., 32: 1613.PubMedCrossRefGoogle Scholar
  34. Fuxe, K., Ogren, S.O., Agnati, L., Gustafsson, J.A., and Jonsson, G., 1977, On the mechanisms of action of the antidepressant drugs amitriptyline and nortriptyline; evidence for 5-hydroxytryptamine receptor blocking activity, Neurosci. Letts., 6: 339.CrossRefGoogle Scholar
  35. Fuxe, K., iigren, S.O., Everitt, B.J., Agnati, L.F., Eneroth, P., Gustafsson, J.A., Jonsson, G., Skett, P., and Holm, A.C., 1978, The effect of antidepressant drugs of the imipramine type on various moniamine systems and their relation to changes in behavior and neuroendocrine function, in “13th Symposium Medicum Hoechst on Depressive Disorders”, S. Garattini, ed., F.K. Schattauer, Stuttgart.Google Scholar
  36. Gayford, J.J., Parker, A.L., Phillips, E.M., and Rowsell, A.R., 1973, Whole blood 5-hydroxytryptamine during treatment of endogenous depressive illness, Br. J. Psychiat., 122: 597.CrossRefGoogle Scholar
  37. Gessa, G.L., Biggio, G., Fadda, F., Corsini, F.U., and Tagliamonte, A., 1974, Effect of the oral administration of tryptophan-free amino acid mixtures on serum tryptophan, brain tryptophan and serotonin metabolism, J. Neurochem., 22: 869.PubMedCrossRefGoogle Scholar
  38. Goodwin, F.K., and Post, R.M., 1974, Brain serotonin, affective illness, and antidepressant drugs: Cerebrospinal fluid studies with probenecid, Adv. Biochem. Psychopharmacol., 11: 341.PubMedGoogle Scholar
  39. Goodwin, F.K., Post, R.M., Dunner, D.L., and Gordon, E.K., 1973, Cerebrospinal fluid amine metabolites in affective illness: the probenecid technique, Am. J. Psychiat., 130: 73.PubMedGoogle Scholar
  40. Hingtgen, J.N., and Aprison, M.H., 1963, Behavioral response rates in pigeons: Effect of a-methyl-m-tyrosine, Sci., 141: 169.CrossRefGoogle Scholar
  41. Hingtgen, J.N., and Aprison, M.H., 1966, Food consumption in pigeons following the administration of a-methyl-metatyrosine during approach behavior and free feeding, Life Sci., 5: 1249.CrossRefGoogle Scholar
  42. Hingtgen, J.N., and Aprison, M.H., 1975, Behavioral depression in pigeons following the L-tryptophan administration, Life Sci., 16: 1471.PubMedCrossRefGoogle Scholar
  43. Hingtgen, J.N., and Aprison, M.H., 1976, Behavioral and environmental aspects of the cholinergic system, in “Biology of Cholinergic Function”, A.M. Goldberg and I. Hanin, eds. Raven Press, New York.Google Scholar
  44. Kline, N., Sacks, W., and Simpson, G.M., 1964, Further studies on one day treatment of depression with 5-HTP, Am. J. Psychol., 12: 379.Google Scholar
  45. Macchitelli, F.J., Fischetti, D., and Montanarelli, N., 1966, Changes in behavior and electrocortical activity in the monkey following administration of 5-hydroxytryptophan, Psychopharmacol., 9: 447.CrossRefGoogle Scholar
  46. Maj, J., Lewandowska, A., and Rawtow, A., 1979, Central antiserotonin action of amitriptyline, Pharmakopsychiat., 12: 281.CrossRefGoogle Scholar
  47. Matussek, N., Angst, J., Benkert, O., Gmur, M., Papousek, M., Ruther, E. and Woggon, B., 1974, The effect of L-5-hydroxytryptophan alone and in combination with a decarboxylase inhibitor (R04–4602) in depressive patients, Adv. Biochem. Psychopharmacol., 11: 399.PubMedGoogle Scholar
  48. McBride, W.J., and Aprison, M.H., 1973, Release of 5-hydroxytryptamine from serotonergic nerve endings by a-methyl-metatyramine, Pharmacol. Biochem. Behay., 1: 587.CrossRefGoogle Scholar
  49. McBride, W.J., Aprison, M.H., and Hingtgen, J.N., 1973, Effects of a-methyl-meta-tyramine and metaraminol on the serotonin content in preparations of whole tissue and synaptosomes from the telencephalon of the pigeon, Neuropharmacol., 12: 769.CrossRefGoogle Scholar
  50. McBride, W.J., Aprison, M.H., and Hingtgen, J.N., 1974, Effects of 5-hydroxytryptophan on serotonin in nerve endings, J. Neurochem., 23: 385.PubMedCrossRefGoogle Scholar
  51. McBride, W.J., Hyde, T.P., Smith, J.E., Lane, J.D., and Aprison, M.H., 1976a, Effects of tryptophan on serotonin in nerve endings, J. Neurochem., 26: 175.PubMedCrossRefGoogle Scholar
  52. McBride, W.J., Penn, P.E., Hyde, T.P., Lane, J.D., and Smith, J.E., 1976b, Effects of p-chlorophenylalanine on the metabolism of serotonin from 5-hydroxytryptophan, Neurochem. Res., 1: 437.CrossRefGoogle Scholar
  53. Melnuchuk, T., 1978, “Cell Receptor Disorders, ”Western Behavioral Sciences Institute, La Jolla, CA.Google Scholar
  54. Mendels, J., Stinnett, J.L., Burns, D., and Frazer, A., 1975, Amine precursors and depression, Arch. Gen. Psychiat., 32: 22.PubMedCrossRefGoogle Scholar
  55. Murphy, D.L., Baker, M., Goodwin, F.K., Miller, H., Kotin, J., and Bunney, W., 1974, L-tryptophan in affective disorders: Indoleamine changes and differential clinical effects, Psychopharmacol., 34: 11.CrossRefGoogle Scholar
  56. Murphy, D.L., Baker, M., Kotin, J., and Bunney, W.E. Jr., 1973, Behavioral and metabolic effects of L-tryptophan in unipolar depressed patients, in “Serotonin and Behavior”, J. Barchas, and E. Usdin, eds., Academic Press, New York.Google Scholar
  57. Ogren, S.O., Fuxe, K., Agnati, L.F., Gustafsson, J.A., Jonsson, G., and Holm, A.Ç., 1979, Reevaluation of the indoleamine hypothesis of depression. Evidence for a reduction of functional activity of central 5-HT systems for antidepressant drugs, J. Neurol. Trans., 46: 85.CrossRefGoogle Scholar
  58. Papeschi, R., and McClure, D.J., 1971, Homovanillic and 5-hydroxyindoleacetic acid in cerebrospinal fluid of depressed patients, Arch. Gen. Psychiat., 25: 354PubMedCrossRefGoogle Scholar
  59. Penn, P.E., McBride, W.J., Hingtgen, J.N., and Aprison, M.H., 1977, Differential uptake, metabolism and behavioral effects of the D and L isomers of 5-hydroxytryptophan, Pharmacol. Biochem. Behay., 7: 515.CrossRefGoogle Scholar
  60. Prange, A.J., Jr., Wilson, I.C., Lynn, C.W., Alltop, L.B., and Stikeleather, R.A., 1974, L-tryptophan in mania. Contribution to a permissive hypothesis of affective disorders, Arch. Gen. Psychiat., 30: 56.PubMedCrossRefGoogle Scholar
  61. Sano, I., 1972, L-5-hydroxytryptophan-therapie, Folia Psychiat. Neurol. Jpn., 26: 7.PubMedGoogle Scholar
  62. Shea, P.A., Hingtgen, J.N., and Aprison, M.H., 1978, Acetylcholine and serotonin content in brain areas of rats during period of behavioral depression following D, L-5-hydroxytryptophan administration, Neurosci. Abstracts., 4: 324.Google Scholar
  63. Sjstrm, R., 1973, 5-Hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid in manic-depressive psychosis and the effect of probenecid treatment, Eur. J. Clin. Pharmacol., 6: 75.Google Scholar
  64. Sjöerdsma, A., Lovenberg, W., Engleman, K., Carpenter, W.T. Jr., Wyatt, R.J., and Gessa, G.L., 1970, Serotonin now: Clinical implications of inhibiting its synthesis with para-chlorophenylalanine, Ann. Intern. Med., 73: 607.Google Scholar
  65. Smith, J.E., Hingtgen, J.N. Lane, J.D., and Aprison, M.H., 1976a, Neurochemical correlates of behavior - Content of tryptophan, 5-hydroxytryptophan, serotonin, 5-hydroxyindoleacetic acid, tyrosine, dopamine and norepinephrine in four brain parts of the pigeon during behavioral depression following an injection of tryptophan, J. Neurochem., 26: 537.PubMedCrossRefGoogle Scholar
  66. Smith, J.E., Hingtgen, J.N., McBride, W.J., and Aprison, M.H., 1976b, Neurochemical correlates of behavior–Content of tryptophan, 5-hydroxytryptophan, serotonin, 5-hydroxyindoleacetic acid, tyrosine, dopamine and norepinephrine in a nerve ending fraction isolated from three brain areas of the pigeon during the period of behavioral depression following an injection of tryptophan, J. Neurochem., 27: 747.PubMedCrossRefGoogle Scholar
  67. Van Praag, H.M., 1977, Evidence of serotonin-deficient depression, Neuropsychobiol., 3: 56.CrossRefGoogle Scholar
  68. Van Praag, H.M., 1979, Central serotonin. Its relation to depression vulnerability and depression prophylaxis, in “Biological Psychiatry Today”, E. Objols, C. Ballus, E. Gonzalex Monclus and J. Pujol, eds., Elsevier, North Holland.Google Scholar
  69. Van Praag, H.M., and Korf, J., 1971, Endogenous depressions with and without disturbances in the 5-hydroxytryptamine metabolism: A biochemical classification?, Psychopharmacol., 19: 148.CrossRefGoogle Scholar
  70. Van Praag, H.N., Korf, J., Dols, L.C.W., and Schut, T., 1972, A pilot study of the predictive value of the probenecid test in application of 5-hydroxytryptophan as antidepressant, Psychopharmacol., 25: 14.CrossRefGoogle Scholar
  71. Van Praag, H.M., Vandenburg, W., Bos, E.R.H. and Dols, L.C.W., 1974, 5-Hydroxytryptophan in combination with clomipramine in therapy resistant depression., Psychopharmacol., 38: 267.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. H. Aprison
    • 1
  • J. N. Hingtgen
    • 1
  1. 1.Section of Applied and Theoretical Neurobiology, The Institute of Psychiatric Research, Departments of Psychiatry and BiochemistryIndiana University School of MedicineIndianapolisUSA

Personalised recommendations