Advertisement

Serotonin pp 585-601 | Cite as

Serotonergic-Dopaminergic Interactions: Implications for Hyper-Kinetic Disorders

  • Sabit Gabay
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 133)

Abstract

The elucidation of the neurochemical basis of movement disorders is currently one of the most challenging and important preclinical research endeavors. One very promising area of investigation concerns the role of serotonin (5-HT) in the control of neuromotor as well as behavioral activities. As a putative neurotransmitter, 5-HT has been implicated in such diverse activities as sleep (Jouvet, 1969; Jouvet and Pujol, 1974), learned and approach behavior (Aprison and Hingtgen, 1970, 1972; Aprison et al., 1975), aggression (Valzelli, 1974), sexual behavior (Gessa and Tagliamonte, 1974), operant or goal-directed behavior (Stein and Wise, 1974) and temperature regulation (Feldberg and Myers, 1964). On the basis of their earlier pharmacological findings, Brodie and Shore (1957) postulated the existence of two opposing systems regulating various brain functions, one catecholaminergic and the other serotonergic. More recent studies, however, have indicated that the relationship between 5-HT and the catecholamines is most likely one of mutual interaction rather than antagonistic opposition (Samanin and Garattini, 1975).

Keywords

Locomotor Activity Caudate Nucleus Biogenic Amine Dopaminergic Mechanism Serotonergic Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anden, N.-E., and Magnusson, T., 1967, An improved method for the fluorimetric determination of 5-hydroxytryptamine in tissues. Acta Physiol. Scand., 69: 87–94PubMedCrossRefGoogle Scholar
  2. Aprison, M.H., and Hingtgen, J.N., 1970 Neurochemical Correlates of Behavior. Int. Rev. Neurobiol., 13:325–341.CrossRefGoogle Scholar
  3. Aprison, M.H., and Hingtgen, J.N., 1972. Serotonin and Behavior: a brief summary. Fed. Proc., 31:121–129.Google Scholar
  4. Aprison, M.H., Hingtgen, J.N., and McBride, W.J., 1975. Serotonergic and Cholinergic Mechanisms during Disruption of Approach and Avoidance Behavior. Fed. Proc., 34: 1813–1822.PubMedGoogle Scholar
  5. Barbeau, A., 1962. Thy pathogenesis of Parkinson’s disease: A new hypothesis, Can. Med. Assoc. J., 87: 802–809.PubMedGoogle Scholar
  6. Barbeau, A., 1969, L-dopa and juvenile Huntington’s disease, Lancet, 2: 1066.PubMedCrossRefGoogle Scholar
  7. Barbeau, A., 1973. The Biochemistry of Huntington’s Chorea: Recent Developments. The Psychiat. Forum, 4:8–15.Google Scholar
  8. Battista, A.F., Goldstein, M., and Nakatani, S., 1969, Drug Induced Changes of Abnormal Movements in Monkeys with Central Nervous System Lesions. Confin. Neurol., 31: 135–144.PubMedCrossRefGoogle Scholar
  9. Bernheimer, H., Birkmayer, W., and Hornykiewicz, O., 1961, Verteilung des 5-Hydroxytryptamins (Serotonin) im Gehirn des Menschen und sein Verhalten bei Patienten mit Parkinsonsyndrom, Wien. klin. Wschr., 39: 1056–1059.CrossRefGoogle Scholar
  10. Bertler, A., Carlsson, A., and Rosengren, E., 1958. A Method for the Fluorimetric Determination of Adrenaline and Noradrelaline in Tissues, Acta Physiol. Scand., 44: 273–292.PubMedCrossRefGoogle Scholar
  11. Birkmayer, W., Der d-Methyl-p-Tyrosin effekt bei Extrapyramidolen Erkrankungen. Wien. klin. Wschr., 81: 10–12.Google Scholar
  12. Breese, G.R., Cooper, B.R., Grant, L.D., and Smith, R.D., 1974, Biochemical and Behavioral Attractions following 5, 6-Dihydrocyteyptamine Administration into Brain. Neuropharmacology, 13: 177–187.PubMedCrossRefGoogle Scholar
  13. Brodie, B.B., and Shore, P.A., 1957, A concept for a role of serotonin and norepinephrine as chemical mediators in the brain, Ann. N.Y. Acad. Sci., 66: 631–642.PubMedCrossRefGoogle Scholar
  14. Chase, T.N., 1972 Serotonergic mechanisms in Parkinson’s disease, Arch. Neurol., 27: 354–356.PubMedCrossRefGoogle Scholar
  15. Chase, T.N., 1974, Serotonergic - Dopaminergic Interactions and Extrapyramidel Function. Adv. Biochem. Psychopharmac., 11: 377–385.Google Scholar
  16. Chrusciel, T.L., and Herman, Z.S., 1969, Effect of dopalanine on behavior in mice depleted of norepinephrine or serotonin, Psychopharmacologia (Berlin) 14: 124–134.CrossRefGoogle Scholar
  17. Cools, A., 1972a, The role of serotonin in the caudate nucleus: behavioural effects of intracaudate applied drugs in cats, Brain Res., 42: 539.Google Scholar
  18. Cools, A., 1972b, Athetoid and choreiform hyperkinesias produced by caudate application of dopamine in cats, Psychopharmacologia (Berlin), 25: 229–237.CrossRefGoogle Scholar
  19. Cools, A.R., 1974, The transsynaptic relationship between dopamine and serotonin in the caudate nucleus of cats, Psychopharmacologia (Berlin), 36: 17–28.CrossRefGoogle Scholar
  20. Cools, A.R., and Janssen, H.-J., 1974, The nucleus linearis intermedius raphe and behaviour evoked by direct and indirect stimulation of dopamine-sensitive sites within the caudate nucleus of cats, Eur. J. Pharmac., 28: 266–275.CrossRefGoogle Scholar
  21. Cools, A.R., Janssen, H.-J., and Broekkamp, C.L.E., 1974, The differential role of the caudate nucleus and the linear raphe nucleus in the initiation and the maintenance of morphine-induced behaviour in cats, Arch. int. Pharmacod. Ther., 210: 163–174.Google Scholar
  22. Costall, B., and Naylor, R.J., 1975, The role of the raphe and extrapyramidal nucle in the sterotyped and circling response to quipazine. J. Pharm. Pharmac., 27: 368–371.CrossRefGoogle Scholar
  23. Fahn, S., Libsch, L.R., and Cutler, R.W., 1971, Monoamines in the human neostriatum: Topographic distribution in normals and in Parkinson’s disease and their role in akinesia, rigidity, chorea, and tremor, J. Neurol. Sci., 14: 427–455.PubMedCrossRefGoogle Scholar
  24. Feldberg, W., and Myers, R.D., 1964, Effects on Temperature of Amines Injected into the Cerebral Ventrides. A New concept of Temperature Regulation. J. Physiol., 173: 226–237.PubMedGoogle Scholar
  25. Fibiger, H.C., and Campbell, B.A., 1971, The effect of para-chlorophenylalanine on spontaneous locomotor activity in the rat. Neuropharmacology, 10: 25–32PubMedCrossRefGoogle Scholar
  26. Fuller, R.W., Snoddy, H.D., Perry, K.W., Roush, B.W., Molloy, B.B., Bymaster, F.P., and Wong, D.T., 1976, The effects of quipazine on serotonin metabolism in rat brain. Life Sci.,18:925–934.PubMedCrossRefGoogle Scholar
  27. Fuxe, K., Butcher, L.L., and Engel, J., 1971, DL-5-Hydroxgtryptepham - Induced Changes in Central Monoamine neurons after Peripleral Decarboxylase Inhibition. J. Pharm. Pharmac., 23: 420–424.CrossRefGoogle Scholar
  28. Gabay, S., 1966, Brain transaminases in a chemically-induced behavioral abnormality, Rec. Adv. Biol. Psychiat., 8: 73–85.Google Scholar
  29. Gabay, S., Langlais, P.J., and Huang, P.C., 1974, Evidence for the involvement of dopaminergic mechanisms in the ECC syndrome, The Pharmacologists, 16: 308.Google Scholar
  30. Cessa, G.L., and Tagliamonte, A., 1974, Role of Brain Monoamines fn Male Sexual Behavior. Life Sci., 14: 425–436.CrossRefGoogle Scholar
  31. Goldstein, M., Anagnoste, B., Battista, A.F., Owen, W.F., and Nakatani, S., 1969, Studies of amines in the striatum in monkeys with nigral3lesions: The diRosition, biosynthesis and metabolites of H-dopamine and C-serotonin in the striatum, J. Neurochem., 16: 645–653.PubMedCrossRefGoogle Scholar
  32. Grabowska, M., Antkiewicz, L., Maj, J., and Michaluk, J., 1973, Apomorphine and central serotonin neurons, Pol. J. Pharmac. Pharm., 25: 29–39.Google Scholar
  33. Grabowska, M., Antkiewicz, L., and Michaluk, J., 1974, A possible interaction of quipazine with central dopamine structures. J. Pharm. Pharmac., 26: 74–76CrossRefGoogle Scholar
  34. Grabowska, M., and Michaluk, J.., 1974, On the role of serotonin in apomorphine-induced locomotor stimulation in rats, Pharmac. Biochem. Behay., 2: 263–266.CrossRefGoogle Scholar
  35. Grahame-Smith, D.G., 1971, Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan, J. Neurochem., 18: 1053–1066.PubMedCrossRefGoogle Scholar
  36. Green, A.R., and Grahame-Smith, D.G., 1974, The role of brain dopamine in the hyproactivity syndrome produced by increased 5-hydrocytryptomine synthesis in rats. Neuropharmacology 13: 949–959.PubMedCrossRefGoogle Scholar
  37. Green, T.K., and Harvey, J.A., 1974, Enhancement of amphetamine action after interruption of ascending serotonergic pathways. J. Pharmac. Exp. Ther., 190: 109–117.Google Scholar
  38. Groves, P.M., and Rebec, G.V., 1976, Biochemistry and Behavior: Some Centra] Adions of Amplatamine and antipsychatic Drugs. Ann. Rev. Psychol., 27: 91–127.CrossRefGoogle Scholar
  39. Hong, E., and Pardo, E.G., 1966, On the pharmacology of Z-(1 piperazinyl) quinoline. J. Pharmac. Exp. Ther., 153: 259–265.Google Scholar
  40. Hong, E., Sancilio, L.F., Vargas, R., and Pardo, E.G. 1969, Similarities between the pharmacological actions of quipazine and serotonin. Eur. J. Pharmac. 6: 274–280.CrossRefGoogle Scholar
  41. Iversen, L.L., 1970, Neuronal uptake processes for amines and aminoacids. Adv. Biochem. Pharmac., II: 109–132.Google Scholar
  42. Jacobs, B.L., Eubanks, E.E., and Wise, W.D., 1974, Effect of indolealkylamine manipulations on locomotor activity in rats, Neuropharmacology, 13: 575–583.PubMedCrossRefGoogle Scholar
  43. Jacobs, B.L., Trimbach, C., Eubanks, E.E., and Trulson, M., 1975, Hippocumpal Mediation of Raphe Lesion - and PCPA - Induced Hyperactivity in the Rat. Brain Res., 94: 253–261.PubMedCrossRefGoogle Scholar
  44. Jacobs, B.L., Wise, W.D., and Taylor, K.M., 1974, Differential behavioral and neurochemical effects following lesions of the dorsal or median raphe nuclei in rats, Brain Res. 79: 353–361.PubMedCrossRefGoogle Scholar
  45. Jouvet, M., 1969, Biogenic amines and the states of sleep, Science 163: 32–41.PubMedCrossRefGoogle Scholar
  46. Jouvet, M., and Pujol, J.-F., 1974, Effects of central alterations of serotoninergic neurons upon the sleep-waking cycle, Adv. Biochem. Psychopharmac., 11: 19.9–20.9.Google Scholar
  47. Klawans, H.L., 1970, A Pharmacological Analysis of Huntington’s Chorea. Eur, J. Neurol. 4: 148–163.CrossRefGoogle Scholar
  48. Klawans, H.L., and Ringel, S.P., 1973, A Clinical Study of Methysergide in Parkinsonism: Evidence Against a Serotonergic Mechanism J. Neurol. Sci., 19: 399–405.PubMedCrossRefGoogle Scholar
  49. Koe, B.K., and Weissman, A., 1966, p-Chlorophenylalanine: A specific depletor of brain serotonin, J. Pharmac. Exp. Ther., 154: 499–516.Google Scholar
  50. Kostowski, W., Giacolone, E., Garattini, S., and Valzelli, L., l968, Studies on behavioural and biochemical changes in rats after lesion of midbrain raphe, Eur. J. Pharmac., 4: 237–239.CrossRefGoogle Scholar
  51. Langlais, P.J., Huang, P.C., and Gabay, S., 1975. Regional neurochemical studies on the effect of B-B’-iminodipropiontrile (IDPN) in the rat, J. Neurosci. Res., 1: 419–435.PubMedCrossRefGoogle Scholar
  52. Langlais, P.J., Huang, P.C., and Gabay, S. 1977a, Effects of neuropharmacologic agents on a chemically-induced hyperkinetic animal model, Int. J. Neurol., 12: 97–119.Google Scholar
  53. Langlais, P.J., Huang, P.C., and Gabay, S. 1977b, Quipazine’s exacerbation of a hyperkinetic syndrome: Involvement of brain dopamine and serotonin, J. Neurosci. Res., 3: 135–151.CrossRefGoogle Scholar
  54. Lindqvist, M., 1971, Quantitative estimation of 5-hydroxy-3--indole acetic acid and 5-hydroxytryptophen in the brain following isolation by means of a strong cation exchange column. Acta Pharmac. (Kbh.), 29: 303–313.CrossRefGoogle Scholar
  55. Mabry, P.D., and Campbell, B.A., 1973, Serotonergic inhibition of catecholamine-induced behavioral arousal, Brain Res. 49: 381–391.PubMedCrossRefGoogle Scholar
  56. McGeer, P.L., Boulding, J.E., Givson, P.C., and Foulkes, R.C. Drug-Induced Extrapyramidal Reactions, J. Amer.Med.Assoc. 177: 665–670Google Scholar
  57. McLeod, W.R., and de L. Horne, D.J., 1972, Huntington’s chorea and tryptophan, J. Neurol. Neurosurg. Psychiat., 35: 510–513.PubMedCrossRefGoogle Scholar
  58. Medon, P.J., Leeling, J.L., and Phillips, B.M., 1973, Influence of quipazine, a potential inti-parkinsonian agent on the uptake of H-dopamine and H-serotonin into rat striatal tissue in vitro, Life Sci., 13: 685–691.CrossRefGoogle Scholar
  59. Modigh, K., 1972, Central and peripheral effects of 5-hydroxytryptophan on motor activity in mice, Psychopharmacology 23: 48–54.CrossRefGoogle Scholar
  60. Modigh, K., 1974, Functional Aspects of 5-Hydroxytryptamin turn-over in the Central Nervous System. Acta Physiol. Scand. Suppl., 403: 1–56.PubMedGoogle Scholar
  61. Neill, D.B., Grant, L.D., and Grossman, S.P. 1972, Selective potentiation of locomotor effects of emphetamine by midbrain raphe lesions. Physiol. B:ehay., 9 655–657.CrossRefGoogle Scholar
  62. Oliphant, J., Evans, J.I., and Forrest, A.D., 1969, Huntington’s Chorea - Some Biochemical and Therapeutic Aspects. J. Ment. Sci., 106: 718–725.Google Scholar
  63. Pirch, J.H., 1969, Stimulation of locomotor activity by p-chloro phenylalanine and a low dose of reserpine, Arch. int. Pharmacod., 181: 434–440.Google Scholar
  64. Poirier, L.J., Sourkes, T.L., Bouvier, G., Boucher, R., and Carabin, S., 1966, Striatal amines, experimental tremor and the effect of harmaline in the monkey, Brain, 89: 37–52.PubMedCrossRefGoogle Scholar
  65. Rodriguez, R., Rojas-Ramirez, J.A., and Drucker-Colin, R.R. 19.73, Serotonin liek actions of quipazine on the central nervous system. Eur. J. Pharmac., 24: 164–171.Google Scholar
  66. Samanin, R., and Garattini, S., 1975, The Serotonergic System in the brain and its possible functional connections with other aminorgic systems, Life Sci., 17: 1201–1210.PubMedCrossRefGoogle Scholar
  67. Segal, M., 1976, 5-HT antagonists in rat hippocampus. Brain Res. 103: 161–166.PubMedCrossRefGoogle Scholar
  68. Shellenberger, M.K., and Gordon, J.H. 1971, A rapid, Simplified procedure for simultaneous assay of neuropinephrine, dopamine and 5-hydroxytryptamine from discrete brain areas. Anal. Biochem., 39: 356–372.PubMedCrossRefGoogle Scholar
  69. Stein, L., and Wise, C.D. 1974, Serotonin and Behavioral Inhibition, Adv. Biochem. Psychopharmac. 11: 281–291.Google Scholar
  70. Tolosa, E.S., and Sparber, S.B. 1974, Apomorphine in Huntington’s Chorea: Clinical Observations and Theoretical Considerations, Life Sci., 15: 1371–1380.PubMedCrossRefGoogle Scholar
  71. Valzelli, L., 1974, 5-Hydroxytryptamine in Aggressiveness, Adv. Biochem. Psychopharmac., 11: 255–263.Google Scholar
  72. Van Woert, M.H., Ambani, L.M. and Levine, R.J., 1972, Clinical Effects of Para-Chlorophenylalanine in Parkinson’s Disease, Dis. Nerv. Syst., 33: 777–780.PubMedGoogle Scholar
  73. Weiner, W.J., Goetz, C., and Klawans, H.L., 1975, Serotonergic and antiserogonergic influences on apomorphine-induced stereotyped behaviour, Acta Pharmac. Toxic. 36: 155–160.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Sabit Gabay
    • 1
    • 2
  1. 1.Biochemical Research LaboratoryVA Medical CenterBrocktonUSA
  2. 2.Section of Psychiatry and Human BehaviorBrown UniversityProvidenceUSA

Personalised recommendations