Serotonin pp 51-66 | Cite as

Radioautographic Investigation of Serotonin Cells

  • André Calas
  • Jean-Jacques Dupuy
  • Halima Gamrani
  • Jean Gonella
  • Christiane Mourre
  • Madeleine Condamin
  • Jean-François Pellissier
  • Philippe Van den Bosch
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 133)


Several converging groups of recent results tend to modify the concept of the serotonergic neuron or, more generally of the serotonin cell. The general and profuse although variable distribution of serotonin (5 HT) terminals within the central nervous system (CNS), and their synaptic or non-synaptic nature have been emphasized (Descarries et al., 1975; Chan-Palay, 1976; Beaudet and Descarries, 1978; Ségu and Calas, 1978). Serotonin cell bodies have been demonstrated in the CNS outside the classical mesencephalic areas (Chan-Palay, 1977; Descarries and Beaudet, 1978; Léger et al., 1979) and even outside the CNS, for example in the guinea-pig gut (Gershon et al., 1976; Dreyfus et al., 1977b) or in the cat nodose ganglia (Gaudin-Chazal et al., 1978). Finally the occurrence of substance P within the peripheral 5 HT containing cells like enterochromaffin cells (Nillson et al., 1975; Pearse and Polak, 1975) but also within CNS serotonergic neurons (Chan-Palay et al., 1978; Hökfelt et al., 1978) tends to link the concept of 5 HT cell with that of paraneuron (Fujita, 1977). One common feature shared by 5 HT neurons or paraneurons is their capacity to take up and retain either released or exogenously administered 5 HT or related molecules. This uptake property which was emphasized in the concept of APUD cells (Pearse, 1969) has been principally used to label selectively serotonin neurons with radioactive 5 HT and to study them by radioautography (Aghajanian and Bloom, 1967; Calas et al., 1974; Descarries et al., 1975; Chan-Palay, 1976, 1977; Calas and Segu, 1976). This paper presents recent results obtained by this approach not only about the localization but also the physiology of 5 HT neurons and paraneurons.


Myenteric Plexus Median Eminence Serotonergic Neuron Enterochromaffin Cell Serotonin Neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G.K. and Bloom, F.E., 1967, Localization of tritiated serotonin in rat brain by electron-microscopic autoradiography, J. Pharmacol. Exp. Ther., 156: 23.Google Scholar
  2. Alonso, G., Pons, F. and Cadilhac, J., 1974, Mise en évidence par radioautographie de terminaisons indolaminergiques dans les parois ventriculaires cérébrales chez le rat, C.R. Soc. Biol., 168: 1021.Google Scholar
  3. Araneda, S., Gamrani, H., Font, C., Calas, A., Bobillier, P. and Pujol, J.F., 1979, In vivo uptake and retrograde axonal flow of 3H 5 HT by central serotonergic systems, in: “Int. Symp. on Serotonin, Current aspects of neurochemistry and function”, Athens, sept. 11–16, 1979.Google Scholar
  4. Beaudet, A. and Descarries, L., 1978, The monoamine innervation of rat cerebral cortex: synaptic and non synaptic axon terminals, Neuroscience, 3: 851.PubMedCrossRefGoogle Scholar
  5. Bennett, H.S., 1977, A review of “chromaffin, enterochromaffin and related cells” with some comments on the APUD and paraneuron concepts, Arch., Histol. Jap., 40, suppl.: 317.Google Scholar
  6. Bessone, R., Ségu, L. and Calas, A., 1978, Radioautographic identification of serotonergic neurons in Aplysia, Experientia 34:1038Google Scholar
  7. Boyenval, J. and Fischer, J., 1976, Dipping technique, J. Microscopie Biol. Cell., 27: 115.Google Scholar
  8. Calas, A., Alonso, G., Arnauld, E. and Vincent, J.F., 1974, Demonstration of indolaminergic fibers in the median eminence of the duck, rat and monkey, Nature, 250: 242.CrossRefGoogle Scholar
  9. Calas, A. and Ségu, L., 1976, Radioautographic localization and identification of monoaminergic neurons in the central nervous system, J. Microscopie Biol. Cell., 27:249.Google Scholar
  10. Chan-Palay, V., 1976, Serotonin axons in the supra-and sub-epen-cal alterations of cerebrospinal fluid and vasomotor acti-vity, Brain Res., 102:103.Google Scholar
  11. Chan-Palay, V., 1977, Indoleamine neurons and their processes in the normal rat brain and in chronic diet-induced thiamine deficiency demonstrated by uptake of 3H-serotonin, J. Comp. neurol., 176: 467.PubMedCrossRefGoogle Scholar
  12. Chan-Palay, V., 1978, Morphological correlates for transmitter synthesis, transport, release, uptake and catabolism: a study of serotonin neurons in the nucleusparagigantocellularis lateralis, in: “Amino-acids as chemical transmitters, F. Fonnum, ed., Springer Science+Business Media New York and London, 1.CrossRefGoogle Scholar
  13. Chan-Palay, V., Jonsson, G. and Palay, S.L., 1978, Serotonin and substance P coexist in neurons of the rat’s central nervous system, Proc. Natl. Acad. Sci. USA, 75: 1582.Google Scholar
  14. Descarries, L. and Beaudet, A., 1978, The serotonin innervation of adult rat hypothalamus, in: “Biologie cellulaire des processus neurosécrétoires hypothalamiques”, J.D. Vincent and C. Kordon, eds., C.N.R.S., Paris: 135.Google Scholar
  15. Descarries, L., Beaudet, A. and Watkins, K.C., 1975, Serotonin nerve terminals in adult rat neocortex, Brain Res., 100: 563.PubMedCrossRefGoogle Scholar
  16. Descarries, L., Beaudet, A., Watkins, K.C., and Garcia, S., 1979, The serotonin neurons in nucleus raphe dorsalis of adult rat, Anat. Rec., 193: 520.Google Scholar
  17. Descarries, L., and Droz, B., 1970, Intraneural distribution of exogenous norepinephrine in the central nervous system of the rat, J. Cell. Biol., 44: 385.Google Scholar
  18. Descarries, L., and Dupin, J.C., 1974, Retention of noradrenaline3H in brain and preferential extraction of labeled metabolites by glutaraldehyde fixation, Experientia, 30: 1164.PubMedCrossRefGoogle Scholar
  19. Dreyfus, C.F., Bornstein, M.B., and Gershon, M.D., 1977a, Synthesis of serotonin by neurons of the myenteric plexus in situ and in organotypic tissue culture. Brain Res., 128:125.Google Scholar
  20. Dreyfus, C.F., Sherman, D.L.,and Gershon, M.D., 1977b, Uptake of serotonin by intrinsic neurons of the myenteric plexus grown in organotypic tissue culture, Brain Res., 128: 109.Google Scholar
  21. Fujita, T., 1977, Concept of paraneurons, Arch. Histol. Jap., 40, suppl.: 1.Google Scholar
  22. Fujita, T., and Kobayashi, S., 1979, Current views on the paraneurone concept, Trends in Neurosciences, 1: 29.Google Scholar
  23. Gamrani, H., and Calas, A., 1979 (in press), Cytochemical, stereo-logical and radioautographic studies of rat raphe neurons, Mikroskopie.Google Scholar
  24. Gamrani, H., Calas, A., Belin, M.F., Aguera, M. and Pujol, J.F., 1979 (in press), High resolution radioautographic identification of 3H-GABA labeled neurons in the rat raphe dorsalis, Neuroscience Letters.Google Scholar
  25. Gaudin-Chazal, G., Daszuta, A., Ségu, L., Ternaux, J.P., and Puizillout, J.J., 1978, Serotonin containing neurons in the nodose ganglia of the cat, Waking and sleeping, 2:149.Google Scholar
  26. Gershon, M.D., Robinson, R.G., and Ross, L.L., 1976, Serotonin accumulation in the guinea-pig myenteric plexus; ion dependence, structure-activity relationship and the effect of drugs, J. Pharmacol. Exp. Ther., 198: 548.Google Scholar
  27. Greenawalt, J.W., 1972, Localization of monaomine oxidase in rat liver mitochondira, Adv. Biochem. Psychopharmacol., 5: 207.Google Scholar
  28. Hökfelt, T., Ljungdahl, A., Steinbusch, H., Verhofstad, A, Nilsson, G., Brodin, E., Pernow, B. and Goldstein, M., 1978, Immunohistochemical evidence of substance P like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system, Neuroscience, 3:517.Google Scholar
  29. Korneliussen, H., 1976, 5-hydroxytryptamine: autoradiographic evidence for uptake into fibroblast cell nuclei, Experientia, 32: 443.Google Scholar
  30. Lafon-Cazal, M., Calas, A., and Bosc, S., 1973, Capture et rétention de monoamines tritiées dans les corpora cardiaca de locusta migratoria L.- Etude in vitro par radioautographie à haute résolution, J. Microscopie, 17: 223.Google Scholar
  31. Léger, L., Pujol, J.F., Bobillier, P., and Jouvet, M., 1977, Transport axoplasmique de la sérotonine par voie rétrograde dans les neurones monoaminergiques centraux, C.R. Acad. Sci. ( Paris ), 285: 1179.Google Scholar
  32. Leger, L., Wiklund, L., Descarries, L., and Persson, M., 1979, Description of indolaminergic cell component in the cat locus coeruleus: a fluorescence histochemical and radio-autographic study, Brain Res., 168: 43.PubMedCrossRefGoogle Scholar
  33. Meiniel, A., Collin, J.P., and Calas, A., 1972, Incorporation du 5-hydroxytryptophane (5 HTP) dans l’organe pinéal du lacertilien Lacerta vivipara (L): étude par radioautographie à haute résolution, C.R. Acad. Sci. (Paris), 274: 2897.Google Scholar
  34. Meyer, D.C., and Quay, W.B., 1976, Hypothalamic and suprachiasmatic uptake of serotonin in vitro: twenty-four hours changes in male and proestrous female, Endocrinology, 38: 1160.CrossRefGoogle Scholar
  35. Nakai, Y., and Shinkawa, Y., 1971, Electron microscopic autoradiography on the localization of serotonin in the frog median eminence, Z. Zellforsch., 119: 326.PubMedCrossRefGoogle Scholar
  36. Nilsson, G., Larsson, L.I., Hakanson, R., Brodin, E., Sundler, F., and Pernow, B., 1975, Localization of substance P like immunoreactivity in mouse gut, Histochemistry, 43:97.Google Scholar
  37. Pearse, A.G.E., 1969, The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept, J. Histochem. Cytochem., 17: 303.Google Scholar
  38. Pearse, A.G.E., and Polak, J., 1975, Immunocytochemical localization of substance P in mammalian intestine, Histochemistry, 41: 373.PubMedCrossRefGoogle Scholar
  39. Petersen, 0.H., 1979, Electrophysiology of gland cells. Monograph of the physiological society, Academic Press, London.Google Scholar
  40. Ségu, L., and Calas, A., 1978, The topographical distribution of serotoninergic terminals in the spinal cord of the cat: quantitative radioautographic studies, Brain Res., 153: 469.CrossRefGoogle Scholar
  41. Shaskan, E.G., and Snyder, S.H., 1970, Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake, J. Pharmacol. Exp. Ther., 175: 404.Google Scholar
  42. Streit, P., Knecht, E. and Cuenod, M., 1979, Transmitter-specific retrograde labeling in the striato-nigral and raphe-nigral pathways, Science, 205: 306.PubMedCrossRefGoogle Scholar
  43. Thiéry, G. and Rambourg, A., 1976, A new staining technique for studying thick sections in the electron microscope, J. Microscopie Biol. Cell., 26: 103.Google Scholar
  44. Tougard, C., 1970, Distribution et sites de fixation des monoamines dans le parenchyme adénohypophysaire, in: “Neuroendocrinologie“, J. Benoit et C. Kordon, eds., C.N.R.S., Paris, 101.Google Scholar
  45. Tranzer, J.P., Da Prada, M., and Pletscher, A., 1966, Ultrastructural localization of 5-hydroxytryptamine in blood platelets, Nature, 212: 1574.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • André Calas
    • 1
  • Jean-Jacques Dupuy
    • 1
  • Halima Gamrani
    • 1
  • Jean Gonella
    • 2
  • Christiane Mourre
    • 1
  • Madeleine Condamin
    • 2
  • Jean-François Pellissier
    • 3
  • Philippe Van den Bosch
    • 4
  1. 1.Département de Neurobiologie cellulaireInstitut de Neurophysiologie et Psychophysiologie, C.N.R.S.Marseille Cedex 2France
  2. 2.Département de Neurophysiologie végétativeInstitut de Neurophysiologie et Psychophysiologie, C.N.R.S.Marseille Cedex 2France
  3. 3.Laboratoire de NeuropathologieFaculté de MédecineMarseilleFrance
  4. 4.Unité de Morphologie animaleUniversité Catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations