Serotonin pp 477-506 | Cite as

Roles for Serotonin in Neuroembryogenesis

  • Jean M. Lauder
  • James A. Wallace
  • Helmut Krebs
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 133)


The idea that neurotransmitters such as serotonin (5-HT) might have non-transmitter functions during development has arisen from the observation in a number of species that these substances are present early in embryogenesis prior to the onset of synaptogenesis or neurotransmission. (Proposed functions for these early agents include the control of cell shape changes and morphogenetic cell movements during cleavage and gastrulation in sea urchins, fish, amphibians, birds and mammals; participation in the process of neurulation, torsion and flexure in chicks; and as humoral regulators of neuronal genesis in rats (Table 1).


Neural Tube Chick Embryo Locus Coeruleus Raphe Nucleus Floor Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G.K., H.J. Haigler and V.L. Bennett 1974 Amine receptors in brain III. 5-hydroxytryptamine. In: Handbook of Psychopharmacology, L.L. Iversen, S.D. Iversen and S.H. Snyder, eds., Plenum Publishing Co., New York, pp. 63–69.Google Scholar
  2. Aghajanian, G.K., M.J. Kuhar and R.H. Roth 1973 Serotonincontaining neuronal ‘perikarya and terminals: Differential effects of p-chlorophenylalanine. Brain Res., 54: 85–101.PubMedCrossRefGoogle Scholar
  3. Allan, I.J., and D.F. Newgreen 1977 Catecholamine accumulation in neural crest cells and the primary sympathetic chain. Am. J. Anat., 149: 413–421.PubMedCrossRefGoogle Scholar
  4. Baker, P.C. 1965 Changing serotonin levels in developing Xenopus laevis. Acta Embryol. Morph. Exp., 8: 197–204.Google Scholar
  5. Barlow, S.M., P. Morrison and F.M. Sullivan 1974 Plasma corticosterone levels during pregnancy in the mouse: the relative contributions of the adrenal glands and foetalplacental units. J. Endocr., 60: 473–483.PubMedCrossRefGoogle Scholar
  6. Barlow, S.M., P. Morrison and F.M. Sullivan 1975 Effects of acute and chronic stress on plasma corticosterone levels in pregnant and non-pregnant mouse. J. Endocr., 66: 93–99.CrossRefGoogle Scholar
  7. Bartels, W. 1971 Die Ontogenese der aminhaltigen Neuroensysteme im Gehrin von Rana temporaría. Z. Zellforsch., 116: 94–118.PubMedCrossRefGoogle Scholar
  8. Boucek, R.J., and B.B. Bourne 1962 Catecholamines of the allantoic fluid in the developing chick embryo. Nature, 193 (4821): 1181–1182.PubMedCrossRefGoogle Scholar
  9. Bourgoin, S., F. Artaud, J. Adrien, F. Hery, J. Glowinski and M. Harmon 1977 5-hydroxytryptamine catabolism in the rat brain during ontogenesis. J. Neurochem., 28:415–422.Google Scholar
  10. Burack, W.R., and A. Badger 1964 Sequential appearance of DOPA decarboxylase, dopamine-ß-oxidase and norepinephrine N-methyltransf erase activities in embryonic chick. Fed. Proc., 23: 561.Google Scholar
  11. Burden, H.W., and I.E. Lawrence 1973 Presence of biogenic amines in early rat development. Am. J. Anat., 136: 251–257.PubMedCrossRefGoogle Scholar
  12. Buznikov, G.A., I.V. Chudakova, L.V. Berdysheva and N.M. Vyazmína 1968 The role of neurohumors in early embryogenesis. II. Acetylcholine and catecholamine content in developing embryos of sea urchin. J. Embryol. Exp. Morph., 20: 119–128.PubMedGoogle Scholar
  13. Buznikov, G.A., I.V. Chudakova and N.D. Znezdia 1964 The role of neurohumors in early embryogenesis. I. Serotonin content of developing embryos of sea urchin and loach. J. Embryol. Exp. Morph., 12: 563–573.PubMedGoogle Scholar
  14. Buznikov, G.A., A.N. Kost, N.F. Kucherova, A.L. Mndzhoyan, N.N. Suvorov and L.V. Berdysheva 1970 The role of neurohumors in early embryogenesis. III. Pharmacological analysis of the role of neurohumors in cleavage divisions. J. Embryol. Exp. Morph., 23:549–569.Google Scholar
  15. Buznikov, G.A,, A.V. Sakharova, B.N. Manukhin and L.V. Markova 1972 The role of neurohumors in early embryogenesis, IV, Fluorometric and histochemical study in cleaving eggs and larvae of sea urchins. J. Embryol. Exp. Morpho, 27: 339–351.Google Scholar
  16. Cadilhac, J., and F. Pons 1976 Le dêveloppement prenatal des neurones â monoamines chez le rat. Comp. Rend. Soc. Biol., 170: 25–31.PubMedGoogle Scholar
  17. Caston, J.D. 1962 Appearance of catechol amines during development of Rana pipiens. Devel. Biol., 5: 468–482.CrossRefGoogle Scholar
  18. Cochard, P., M. Goldstein and I. Black 1978 Ontogenetic appearance and disappearance of tyrosine hydroxylase and catecholamines in the rat embryo. Proc. Natl. Acad. Sci., 75 (6): 2986–2990.PubMedCrossRefGoogle Scholar
  19. Daszuta, A., G. Gaudin-Chazal, M. Faudon, M.C. Barrit and J.P. Ternaux 1979 Endogenous levels of tryptophan, serotonin and 5-hydroxyindole acetic acid in the developing brain of the cat. Neurosci. Letters, 11: 187–192.CrossRefGoogle Scholar
  20. Deeb, S.S. 1972 Inhibition of cleavage and hatching of sea urchin embryos by serotonin. J. Exp. Zool., 181: 79–86.CrossRefGoogle Scholar
  21. Deguchi, T., A.K. Sinha and J.D. Barchas 1973 Biosynthesis of serotonin in raphe nuclei of rat brain: effect of p-chlorophenylalanine. J. of Neurochem., 20: 1329–1336.CrossRefGoogle Scholar
  22. Duncan, D.B. 1955 Multiple range and multiple F-tests. Biometrics, 11: 1–42.CrossRefGoogle Scholar
  23. Emanuelsson, H. 1974 Localization of serotonin in cleavage embryos of Ophryotrocha Labronica La Greca and Bacci. Wilhelm Roux’s Archiv., 175: 253–271.CrossRefGoogle Scholar
  24. Emanuelsson, H., and K. Palen 1975 Effects of L-tryptophan on morphogenesis and growth in the early chick blastoderm. Wilhelm Roux’s Archiv., 177: 1–17.CrossRefGoogle Scholar
  25. Falck, B., and C. Owman 1965 A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monoamines. Acta Univ. Lund, 2: 4–23.Google Scholar
  26. Fernstrom, J.D., and R.J. Wurtman 1971 Effect of chronic corn consumption on serotonin content of the rat brain. Nature (New. Biol.), 234: 62–64.Google Scholar
  27. Freeman, B.G. 1972 Surface modifications of neural epithelial cells during formation of the neural tube in the rat embryo. J. Embryol. Exp. Morph., 28: 437–448.PubMedGoogle Scholar
  28. Fuxe, K. 1965 Evidence for the existence of monoamine neurons in the central nervous system. III. The monoamine nerve terminal. Z. Zellforsch., 65: 573–596.PubMedCrossRefGoogle Scholar
  29. Gerard, A., H. Gérard and A. Dollander 1978 Capture et retention de Sérotonine tritiêe par la chorde dorsale d’embryon de Poulet. C.R. Acad. Sc. Paris, Series D, 286: 891–894.Google Scholar
  30. Gershon, M.D., G. Teitelman, T.P. Rothman, T.H. Joh and D.J. Reis 1979 Proliferation and lack of species and organ specificity in transient catecholaminergic cells of developing mammals. Soc. Neurosci. Abst., 5: 334.Google Scholar
  31. Gilman, A.G., and Nirenberg, M. 1971 Effect of catecholamines on the adenosine 3’:5’-cyclic monophosphate concentrations of clonal satellite cells of neurons. Proc. Nato Acad. Sci. USA, 68: 2165–2168.CrossRefGoogle Scholar
  32. Giulian, D., B.S. McEwen and L.A. Poherecky 1974 Altered development of the rat brain serotonergic system after disruptive neonatal experience, Proc. Nat, Acad, Sci, USA, 71: 4106–4110.CrossRefGoogle Scholar
  33. Golden, G.S. 1972 Embryologic demonstration of nigro-striatal projection in the mouse. Brain Res., 44: 278–282.PubMedCrossRefGoogle Scholar
  34. Golden, G.S. 1973 Prenatal development of biogenic amine systems of the mouse brain. Dev. Biol., 33: 300–311.PubMedCrossRefGoogle Scholar
  35. Greengard, O. 1970 The developmental formation of enzymes in rat liver. In: Biological Actions of Hormones, Vol. 1, G. Litwak, ed., Academic Press, New York, pp. 53–87.Google Scholar
  36. Gustafson, T., and M. Toneby 1970 On the role of serotonin and acetylcholine in sea urchin morphogenesis. Exp. Cell Res., 62: 102–117.PubMedCrossRefGoogle Scholar
  37. Gustafson, T., and M. Toneby 1971 How genes control morphogenesis. Amer. Scientist, 59: 452–462.Google Scholar
  38. Hamburger, V., and H.L. Hamilton 1951 A series of normal stages in the development of the chick embryo. J. Morph., 88: 49–92.CrossRefGoogle Scholar
  39. Ignarro, L.J., and F.E. Shideman 1968a Appearance and concentrations of catecholamines and their biosynthesis in the embryonic and developing chick. J. Pharmacol. Exp. Ther., 159, 38–48.PubMedGoogle Scholar
  40. Ignarro, L.J., and F.E. Shideman 1968b Norepinephrine and epinephrine in the embryo and embryonic heart of the chick: uptake and subcellular distribution. J. Pharmacol. Exp. Ther., 159: 49–58.PubMedGoogle Scholar
  41. Joffe, J.M. 1978 Hormonal mediation of the effects of prenatal stress on offspring behavior. In: Studies on the Development of Behavior and the Nervous System, Academic Press, New York, pp. 107–144.Google Scholar
  42. Jones, B.E., and R.Y. Moore 1977 Ascending projections of the locus coeruleus in the rat. H. Autoradiographic study. Brain Res., 127: 23–53.CrossRefGoogle Scholar
  43. Jonsson, G. 1977 On the relation between central noradrenaline and serotonin nerve terminals and postsynaptic receptors during ontogeny. Acta physiol. scand. Suppl., 452: 23–26.Google Scholar
  44. Kent, D.L., and J.R. Sladek Jr. 1979 Histochemical, pharmacological and microspectrofluorometric analysis of new sites of serotonin localization in the rat hypothalamus. J. Comp. Neur., 180: 221–236.CrossRefGoogle Scholar
  45. Kirby, M.L., and S.A. Gilmore 1972 A fluorescence study on the ability of the notochord to synthesize and store catecholamines in early chick embryos. Anat. Rec., 173: 469–478.PubMedCrossRefGoogle Scholar
  46. Koe, B.K., and A. Weissman 1968 The pharmacology of parachlorophenylalanine, a selective depletor of serotonin stores. Adv. Pharmacol., 68: 29–47.CrossRefGoogle Scholar
  47. Kujawa, M,J,, and E.F. Zimmerman 1978 Palate cells in culture: 5-HT induced contraction and neural crest origin. Teratol., 17: 29A.Google Scholar
  48. Lauder, J,M,, and F.E. Bloom 1974 Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat, I. Cell differentiation. J. Comp. Neurol,, 155:469–481.Google Scholar
  49. Lauder, J.M., and F.E. Bloom 1975 Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat. II. Synaptogenesis. J. Comp. Neurol., 163: 251–264.CrossRefGoogle Scholar
  50. Lauder, J.M., and H. Krebs 1976 Effects of p-chlorophenylalanine on time of neuronal origin during embryogenesis in the rat. Brain Res., 107: 638–644.PubMedCrossRefGoogle Scholar
  51. Lauder, J.M., and H. Krebs 1978a Serotonin as a differentiation signal in early neurogenesis. Dev. Neurosci., 1: 15–30.PubMedCrossRefGoogle Scholar
  52. Lauder, J.M., and H. Krebs 1978b Serotonin and early neurogenesis. In: Maturation of Neurotransmission, A. Vernadakis, E. Giacobini and G. Filogamo, (eds.), S. Karger, Basel, pp. 171–180.Google Scholar
  53. Lawrence, I.E., Jr., and H.W. Burden 1973 Catecholamines and morphogenesis of the chick neural tube and notchord. Am. J. Anat., 137: 199–208.PubMedCrossRefGoogle Scholar
  54. Levitt, P., and P. Rakic 1979 Genesis of central monoamine (MA) neurons in the Rhesus monkey. Soc. Neurosci. Abst., 5: 341.Google Scholar
  55. Lidov, H.G.W., M.E. Molliver and N.R. Zecevic 1978 Characterization of the monoamine innervation of immature rat neocortex: A histofluorescence analysis. J. Comp. Neurol., 181: 663–680.PubMedCrossRefGoogle Scholar
  56. Maeda, T., and A. Dresse 1969 Recherches sur le dévelopment du locus coeruleus. Etude des catêcholamines au microscope de fluorescence. Acta Neurol. Belg., 69: 5–10.Google Scholar
  57. Michaud, N.J., and A.F. Burton 1977 Maternal-fetal relationships in corticosteroid metabolism. Biol. Neonate, 32: 132–137.PubMedCrossRefGoogle Scholar
  58. Moyer, J.A., L.R. Herrenkohl and D.M. Jacobowitz 1978 Stress during pregnancy: Effect on catecholamines in discrete brain regions of offspring as adults. Brain Res., 144: 173–178.PubMedCrossRefGoogle Scholar
  59. Nahmod, V.E., S. Finkielman, E.E. Benarroch and C.J. Pirola 1978 Angiotensin regulates release and synthesis of serotonin in brain. Science, 202: 1091–1093.PubMedCrossRefGoogle Scholar
  60. Nair, V., B. Tabakoff, F. Uugar and S.G.A. Alivisatos 1976 Ontogenesis of serotonergic systems in rat brain. Res. Chem. Path. Pharmacol., 14: 63–73.Google Scholar
  61. Oey, J. 1975 Noradrenaline induces morphological alterations in nucleated and enucleated rat C6 glioma cells. Nature, Lond., 257: 317–319.CrossRefGoogle Scholar
  62. Olson, L., L.O. Boreus and A. Seiger 1973 Histochemical demonstration and mapping of 5-hydroxytryptamine and catecholaminecontaining neuron systems in the human fetal brain. Z. Anat. Entwickl.ó esch., 139: 259–282.CrossRefGoogle Scholar
  63. Olson, L,, and A. Seiger 1972 Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z. Anat, Entwickl, Gesch,, 137:301–316Google Scholar
  64. Penit, Jo, B. Cantau, J. Huot and S. Jard 1977 Adenylate cyclase from synchronized neuroblastoma cells: responsiveness to prostaglandin El, adenosine and dopamine during cell cycle. Proc, Nato Acad. Sci. USA, 74: 1575–1579.CrossRefGoogle Scholar
  65. Pienkowski, M.M. 1977 Involvement of biogenic amines in control of early mouse embryos. Anat. Rec., 189 (3): 550.Google Scholar
  66. Pinsky, L., and A.M. Digeorge 1965 Cleft palate in the mouse: a teratogenic index of glucocorticoid potency. Science, 147: 402–403.PubMedCrossRefGoogle Scholar
  67. Prasad, K., and K.N. Gilmer 1974 Demonstration of dopamine-sensitive adenylate cyclase in malignant neuroblastoma cells and change in sensitivity of adenylate cyclase to catecholamines in ‘differentiated’ cells. Proc. Nat. Acad. Sci. USA, 71: 2525–2529.PubMedCrossRefGoogle Scholar
  68. Raedler, E., and A. Raedler 1978 Autoradiographic study of early neurogenesis in rat neocortex. Anat. Embryol., 154: 267–284.PubMedCrossRefGoogle Scholar
  69. Rosengarten, H., and A.J. Friedhoff 1979 Enduring changes in dopamine receptor cells of pups from drug administration to pregnant and nursing rats. Science, 203: 1133–1135.PubMedCrossRefGoogle Scholar
  70. Saavedra, J.M., and J. Axelrod 1973 Demonstration and distribution of phenylethanolamine in brain. Proc. Nat. Acad. Sci. USA, 70: 769–772.PubMedCrossRefGoogle Scholar
  71. Saavedra, J.M., J.T. Coyle and J. Axelrod 1974 Developmental characteristics of phenylethanolamine and octopamine in the rat brain. J. Neurochem., 23: 511–515.PubMedCrossRefGoogle Scholar
  72. Sahu, S.K., and K.M. Prasad 1975 Effects of neurotransmitters and prostaglandin El on cyclic AMP levels in various clones of neuroblastoma cells in culture. J. Neurochem., 24: 1267–1269.PubMedCrossRefGoogle Scholar
  73. Schlumpf, M., and W. Lichtensteiger 1979 Catecholamines in the yolk sac epithelium of the rat. Anat. Embryol., 156: 177–187.PubMedCrossRefGoogle Scholar
  74. Schlumpf, M., W.J. Shoemaker and F.E. Bloom 1977 The development of catecholamine fibers in the prenatal cerebral cortex of the rat. Soc. Neurosci. Abst., 3: 361.Google Scholar
  75. Schoenwolf, G.C. 1979 Observations on closure of neuropores in the chick embryo. Am. J. Anat., 155 (4): 445–466.PubMedCrossRefGoogle Scholar
  76. Schowing, J., P. Sprumont and B. Van Toldeo 1977 Influence of L.5-hydroxytryptophan on the development of the chick embryo. C.R. Acad. Sc. Paris, 171 (6): 1163–1166.Google Scholar
  77. Schubert, D., H. Tarikas and M. LaCorbiere 1976 Neurotransmitter regulation of adenosine 3’,5’-monophosphate in clonal nerve, glia, and muscle cell lines. Science, 30: 471–472.CrossRefGoogle Scholar
  78. Schwartz, J.P. 1976 Catecholamine-mediated elevation of cyclic GMP in the rat C-6 glioma cell line. J. Cyclic Nucl. Res., 2: 287–296.Google Scholar
  79. Schwartz, J.P., N.R. Morris and B.McL. Breckenridge 1973 Adenosine 3’,5’-monophosphate in glial tumor cells. Alterations by 5-bromodeoxyuridine. J. Biol. Chem., 248: 2699–2704.PubMedGoogle Scholar
  80. Seiger, A., and L. Olson 1973 Late prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z. Anat. Entwickl. Gesch., 140: 281–318.CrossRefGoogle Scholar
  81. Shoukimas, G.M., and J.W. Hinds 1978 The development of the cerebral cortex in the embryonic mouse: An electron microscopic serial section analysis. J. Comp. Neurol., 179: 795–830.PubMedCrossRefGoogle Scholar
  82. Sims, T.J. 1977 The development of monoamine-containing neurons in the brain and spinal cord of the salamander, Ambystoma mexicanum. J. Comp. Neurol., 173: 319–336.PubMedCrossRefGoogle Scholar
  83. Specht, L.A., V.M. Pickel, T.H. Joh and D.J. Reis 1978a Immunocytochemical localization of tryosine hydroxylase in processes within the ventricular zone of prenatal rat brain. Brain Res., 156: 315–321.PubMedCrossRefGoogle Scholar
  84. Specht, L.A., V.M. Pickel, T.H. Joh and D.J. Reis 1978b Ultrastructure of the nigrostriatal system in early prenatal rat brain by immunocytochemical localization of tyrosine hydroxylase. Soc. for Neurosci. Abst., 4: 386.Google Scholar
  85. Strudel, G., R. Meiniel and G. Gateau 1977a Recherches d’amines fluorigénes dans les chordes d’embryons de Poulet traités par des cholinergiques. C.R. Acad. Sc. Paris, 284: 1097–1100.Google Scholar
  86. Strudel, G., M. Recasens and P. Mandel 1977b Identification de câtecholamines et de sérotonine dans les chordes d’embryons de Poulet. C.R. Acad. Sc. Paris, 284: 967–969.Google Scholar
  87. Swanson, L.W., and B.K. Hartman 1975 The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-ß-hydroxylase as a marker. J. Comp. Neurol., 163: 467–506.PubMedCrossRefGoogle Scholar
  88. Taber Pierce, E. 1973 Time of origin of neurons in the brain-stem of the mouse. Prog. Brain. Res., 40: 53–65.CrossRefGoogle Scholar
  89. Teitelman, G., T.H. Joh and D.J. Reis 1978 Transient expression of a noradrenergic phenotype in cells of the rat embryonic gut. Brain Res., 158: 229–234.PubMedCrossRefGoogle Scholar
  90. Tennyson, V.M., R.E. Barrett, G. Cohen, L. Cote, R. Heikkila and C. Mytilineou 1972 The developing neostriatum of the rabbit: Correlation of fluorescence histochemistry, electron microscopy, endogenous dopamine levels, and [H3] dopamine uptake. Brain Res., 251–285.Google Scholar
  91. Tennyson, V.M., C. Mytilineau and R.E. Barrett 1973 Fluorescence and electron microscopic studies of the early development of the substantia nigra and area ventralis tegmenti in the fetal rabbit. J. Comp. Neurol., 149: 233–258.PubMedCrossRefGoogle Scholar
  92. Tennyson, V.M., C. Mytilineau, R. Heikkila, R.E. Barrett, L. Cole and G. Cohen 1975 Development of dopamine containing neuroblasts of the substantia nigra, In: The Golgi Centennial Symposium, M. Santini (ed.), Raven Press, New York, pp. 449–464.Google Scholar
  93. Toneby, M. 1977 Functional aspects of 5-Hydroxytryptamine and dopamine in early embryogenesis of Echinoidea and Asteroidea. University of Stockholm, Stockholm, Sweden.Google Scholar
  94. Turner, B,B,, R.J. Katz, K.A. Roth and B.J. Carroll 1978 Central elevation of phenylethanolamine N-methyltransferase activity following stress. Brain Res., 153: 419–422.Google Scholar
  95. Uzbekov, M.G., S. Murphy and S.P.R. Rose 1979 Ontogenesis of “serotonin” in different regions of rat brain. Brain Res,, 168: 195–1990PubMedCrossRefGoogle Scholar
  96. Wallace, J.A. 1979 Biogenic amines in the development of the early chick embryo. Ph.D., Thesis, University of California, Davis.Google Scholar
  97. Wheatley, D.M. 1977 Temperature and the progression of HeLA S-3 cells from G2 into mitosis in the presence and absence of the amino acid analogue, para-fluorophenylalanine. Cytobios, 18: 37–50.PubMedGoogle Scholar
  98. Wheatley, D.M., and J.Y. Henderson 1974 p-fluorophenylalanine and “division-related proteins.” Nature, 247:281–283.Google Scholar
  99. Witschi, E. 1962 In: Growth, Biological Handbooks, Fed. Amer. Soc. Expo Biol., pp. 304–314.Google Scholar
  100. Zambotti, F0, M. Carruba, L. Vicentini and P. Mantegazza 1976 Selective effect of a maize diet on reducing serum and brain tryptophan contents and blood and brain serotonin levels, Life Sci., 17: 1663–1670.Google Scholar
  101. Zarrow, M.X, G.C. Haltmeyer, V.H. Denenberg and J. Thatcher 1966 Response of the infantile rat to stress. Endocrinology, 79: 631–634.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Jean M. Lauder
    • 1
  • James A. Wallace
    • 1
  • Helmut Krebs
    • 1
  1. 1.Department of AnatomyUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations