Serotonin pp 417-429 | Cite as

The Serotonin Connection: Some Evidence for a Specific Metabolic Organization

  • Jean-François Pujol
  • Amanda Degueurce
  • Jean-Paul Natali
  • Marcel Tappaz
  • Leif Wiklund
  • Lucienne Leger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 133)


During the last two decades numerous studies have demonstrated that the majority of serotonin (5 HT) containing cell bodies are mainly 1 if not exclusively 2 located among the heterogenous population of the raphe nuclei 3,4. Considerable amount of approaches using classical degeneration 5, histochemical fluorescence 6,7,8 anterograde 9,10,11,12,13,14 and retrograde axoplasmic flow 15,16 17,18 have led to consider the extreme complexity of the anatomical organization of these nuclei. Their multiple connections with all brain regions and with other specific systems.


Locus COERULEUS Daily Variation Raphe Nucleus Dorsal Raphe Nucleus Tryptophan Hydroxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Dahlström and K. Fuxe, Evidence for the existence of monoamine-containing neurons in the central nervous system. I - Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. 62 (suppl. 232): 1 (1964).Google Scholar
  2. 2.
    L. Leger, L. Wiklund, L. Descarries and M. Persson, Description of an indolaminergic cell component in the cat locus coeruleus: a fluorescence histochemical and radioautographic study, Brain Res. 168: 43 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    E. Taber, A. Brodai and F. Walberg, The raphe nuclei of the brain stem in the cat. I - Normal topography and cytoarchitecture and general discussion, J. Comp. Neurol. 114: 161 (1960).PubMedCrossRefGoogle Scholar
  4. 4.
    F. Valverde, Reticular formation of the albino rat’s brain stem: cytoarchitecture and cortifugal connections, J. Comp. Neurol. 119: 25 (1962).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Brodai, F. Walberg and E. Taber, The raphe nuclei of the brain stem in the cat. II - Efferent connections, J. Comp. Neurol., 114: 239 (1960).CrossRefGoogle Scholar
  6. 6.
    A. Björklund, A. Nobin and U. Stenevi, The use of neurotoxic dihydroxytryptamines as tools for morphological studies and localized lesioning of central indoleamine neurons, Z. Zellforsch. 145: 479 (1973).CrossRefGoogle Scholar
  7. 7.
    K. Fuxe, Evidence for the existence of monoamine containing neurons in the central nervous system. IV - The distribution of monoamine terminals in the central nervous system, Acta Physiol. Scand. 64: 37 (1965).Google Scholar
  8. 8.
    U. Ungerstedt, Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand. 367: 1 (1971).Google Scholar
  9. 9.
    A.E. Halaris, B.E. Jones and R.Y. Moore, Axonal transport in serotonin neurons of the midbrain raphe, Brain Res. 107: 555 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    R.Y. Moore and A.E. Halaris, Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat, J. Comp.Neurol. 164: 171 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    L.C.A. Conrad, C.M. Leonard and D.W. Pfaff, Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study, J. Comp. Neurol. 156: 179 (1974).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Bobillier, S. Seguin, F. Petitjean, D. Salvert, M. Touret and M. Jouvet, The raphe nuclei of the cat brainstem: a topographical atlas of their efferent projections as revealed by autoradiography, Brain Res. 113: 449 (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    P. Bobillier, S. Seguin, A. Degueurce, B.D. Lewis and J.F. Pujol, The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography, Brain Res. 116: 1 (1979).CrossRefGoogle Scholar
  14. 14.
    E.C. Azmitia, The serotonin-producing neurons of the midbrain median and dorsal raphe nuclei, in:“Handbook of Psychopharmacology”, L.L. Iversen, S.D. Iversen and S.H. Snyder, ed., Springer Science+Business Media New York (1978).Google Scholar
  15. 15.
    K. Sakai, M. Touret, D. Salvert, L. Leger and M. Jouvet, Afferent projections to the cat locus coeruleus as visualized by the horseradish peroxidase technique, Brain Res., 119: 21 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    K. Sakai, M. Touret, D. Salvert and M. Jouvet, Afferents to the cat locus coeruleus and rostral raphe nuclei as visualized. by the horseradish peroxidase technique, in: “Interactions between putative neurotransmitters in the brain”, S. Garattini, J.F. Pujol and R. Samanin, ed., Raven Press, New York (1978).Google Scholar
  17. 17.
    G.K. Aghajanian and R.Y. Wang, Habenular and other midbrain raphe afferents dèmonstrated by a modified retrograde tracing technique, Brain Res., 122: 229 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    S.S. Mosko, D. Haubrich and B.L. Jacobs, Serotonergic afferents to the dorsal raphe nucleus: evidence from HRP and synaptosomal uptake studies, Brain Res., 119: 269 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Jouvet, The role of monaomine and acetylcholine containing neurons in the regulation of the sleep waking cycle, in: “Ergebnisse der Physiologie”, R.H. Adrian, ed., Springer Verlag, Berlin (1972).Google Scholar
  20. 20.
    W. Kostowski, E. Giacalone, S. Garattini and L. Valzelli, Studies on behavioural and biochemical changes in rats after lesions in midbrain raphe, Eur. J. Pharmacol. 4: 371 (1968).PubMedCrossRefGoogle Scholar
  21. 21.
    L.P. Grant, D.V. Coscina, S.P. Grossman and D.X. Freedman, Muritide’after serotonin depleting lesions-of midbrain raphe nuclei, Pharmacol.’Biochem. Behay. 1: 77 ’(1–973)Google Scholar
  22. 22.
    J. Ferguson, S.J. Henriksen,-’H. Cohen,:(1. Mitchell, J. Barchas And W. Dement, Hypersexuality and behavioural changes in cats caused by ‘administration of p-chlarophenylalanine, Science 168: 499 (1970).PubMedCrossRefGoogle Scholar
  23. 23.
    B. Eichelman and N.B. Thoa, The aggressive monoamines, Biol. Psychiat. 6: 143 (1973).Google Scholar
  24. 24.
    M. Vergnes, G. Marck and E. Kempf, Lesions du raphê et réaction d’agression interspécifiqüe rat-souris: effets comportementaux et biochimiques, Brain Res. 57: 67 (1973).PubMedCrossRefGoogle Scholar
  25. 25.
    S.A. Lorens, Effect of lesions in the raphe system on self stimulation in the rat, Physiol. Behay. 7: 815 (1971).CrossRefGoogle Scholar
  26. 26.
    B.J. Meyerson, Central nervous monoamines and hormone-induced estrous behaviour in the spayed rat, Acta Physiol. Scand. 63 (suppl. 241): 1 (1964).Google Scholar
  27. 27.
    B.J. Everitt, K. Fuxe and G. Jonsson, The effects of 5,6-dihydroxytryptamine lesions of ascending 5-hydroxyhyptamine pathways on the sexual and aggressive behavior of female rats, J. Pharmacol 6: 25 (1975).Google Scholar
  28. 28.
    S.A. Lorens, Raphe lesions in cats: forebrain serotonin and advance behaviour, Pharmacol. Biochem. Behay. 1: 487 (1973).CrossRefGoogle Scholar
  29. 29.
    R. Samanin, W. Oumulka and L. Valzelli, Reduced effect of morphine in midbrain lesioned rats, Eur. J. Pharmacol. 10: 339 (1970).PubMedCrossRefGoogle Scholar
  30. 30.
    W. Feldberg and R.D. Myers, A new concept of temperature regulation by amines in the hypothalamus, Nature 200: 1325 (1963).PubMedCrossRefGoogle Scholar
  31. 31.
    D.V. Coscina, L.D. Grant, S. Balagura and S.P. Grossman, hyperdipsia after serotonin depleting midbrain lesion, Nature 235: 63 (1972).CrossRefGoogle Scholar
  32. 32.
    S.A. Lorens and L.M. Yunger, Morphine analgesia, two way avoidance and consummatory behavior following lesions in the midbrain raphe nuclei in the rat, Pharmacol. Biochem. Behay. 2: 215 (1974).CrossRefGoogle Scholar
  33. 33.
    J.F. Pujol, P. Keane, A. McRae, B.D. Lewis and B. Renaud, Biochemical evidence for serotonergic control of the locus coeruleus, in: “Interactions between putative neurotransmitters in the brain”, S. Garattini, J.F. Pujol and R. Samanin, ed., Raven Press, New York (1978).Google Scholar
  34. 34.
    L. Descarries and L. Leger, Serotonin nerve terminals in the locus coeruleus of the adult rat, in: “Interactions between putative neurotransmitters in the brain”, S. Garattini, J.F. Pujol and R. Samanin, ed., Raven Press, New York (1978).Google Scholar
  35. 35.
    J.P. Kan, G. Chouvet, F. Hery, G. Debilly, A. Mermet, J. Glowinski and J.F. Pujol, Daily variations of various parameters of serotonin metabolism in the rat brain. I - Circadian variations of tryptophan-5-hydroxylase in the raphe nuclei and the striatum, Brain Res. 123: 125 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    J.P. Natali, A. Degueurce, G. Chouvet and J.F. Pujol, Genetic studies of daily variations of first step enzymes of monoamines metabolism in the brain of inbred strains of mice and hybrids. I - Daily variations of tryptophan hydroxylase activity in the nuclei, raphe dorsalis, raphe centralis and in the striatum, Brain Res., in press.Google Scholar
  37. 37.
    M. Tappaz and J.F. Pujol, Estimation of the rate of tryptophan hydroxylation in vivo: a sensitive microassay in discrete rat brain nuclei, J. Neurochem., in press.Google Scholar
  38. 38.
    M. Hamon, S. Bourgoin and J. Glowinski, Feedback regulation of serotonin synthesis in the rat striatum, J. Neurochem. 20: 1727 (1973).PubMedCrossRefGoogle Scholar
  39. 39.
    A. Carlsson and M. Lindqvist, In vivo measurement of tryptophan and tyrosine hydroxylase activities in mouse brain, J. Neur. Trans. 34: 79 (1973).Google Scholar
  40. 40.
    S. Bourgoin, F. Artaud, A. Enjalbert, F. Hery, J. Glowinski and M. Hamon, Acute changes in central 5 HT metabolism induced by the blockade of stimulation of serotoninergic receptors during ontogenesis in the rat, J. Pharmacol. Exp. Ther. 202: 519 (1977).PubMedGoogle Scholar
  41. 41.
    J.F. Pujol, The role of the monoaminergic neurons in the sleep-waking cycle, in: “The sleeping brain”, M.H. Chase, ed., (1972).Google Scholar
  42. 42.
    M. Jouvet, Biogenic amines and the states of sleep, Science 163: 32 (1969).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Jouvet, The role of monoamine and acetylcholine containing neurons in the regulation of the sleep waking cycle, in: “Neurophysiology and neurochemistry of sleep and wakefulness”, R.H. Adrian, ed., Springer Verlag, Berlin (1972).Google Scholar
  44. 44.
    P. Lindbrink, The effect of ascending noradrenalin pathways on sleep and waking in the rat, Brain Res. 74: 19 (1974).CrossRefGoogle Scholar
  45. 45.
    P. Bobillier, J.L. Froment, S. Seguin and M. Jouvet, Effets de la p-chlorophenylalanine et du 5-hydroxytryptophane sur le souuaeil et le métabolisme central des monoamines et des proteines chez le chat, Biochem. Pharmacol. 22: 3077 (1973).Google Scholar
  46. 46.
    M. Jouvet and J.F. Pujol, Effects of central alterations of serotoninergic neurons upon the sleep-waking cycle, Adv. Biochem. Psychopharmacol. 11: 199 (1974).Google Scholar
  47. 47.
    D. Stein, M. Jouvet and J.F. Pujol, Effects of a-methyl-p-tyrosine upon cerebral amine metabolism and sleep states in the cat, Brain Res. 72: 360 (1974).PubMedCrossRefGoogle Scholar
  48. 48.
    F. Petitjean, R. Laguzzi, F. Sordet, M. Jouvet and J.F. Pujol, Effets de l’injection intraventriculaire de 6-hydroxy-dopamine. I - Sur les monoamines cérébrales du chat, Brain Res. 48: 281 (1972).PubMedCrossRefGoogle Scholar
  49. 49.
    F. Petitjean, K. Sakai, C. Blondaux and M. Jouvet, Hypersomnie par lésion isthmique chez le chat. II - Etude neurophysiologique et pharmacologique, Brain Res. 88: 439 (1975).PubMedCrossRefGoogle Scholar
  50. 50.
    J.F. Pujol, D. Stein, C. Blondaux, F. Petitjean, J.L. Froment and M. Jouvet, Biochemical evidences for interaction phenomena between noradrenergic and serotoninergic systems in the cat brain, in: “Frontiers in catecholamine research”, E. Usdin and S. Snyder, ed., Pergamon Press, New York (1973).Google Scholar
  51. 51.
    M.J. Brownstein, M. Palkovits, J.M. Saavedra and J.S. Kizer, Tryptophan hydroxylase in the rat brain, Brain Res. 97: 163 (1975).PubMedCrossRefGoogle Scholar
  52. 52.
    M. Palkovits, M. Brownstein and J.M. Saavedra, Serotonin content of the brain stem nuclei of the rat, Brain Res., 80: 237 (1974).PubMedCrossRefGoogle Scholar
  53. 53.
    L. Leger and L. Descarries, Serotonin nerve terminals in the locus coeruleus of adult rat: a radioautographic study, Brain Res., 145: 1 (1978).PubMedCrossRefGoogle Scholar
  54. 54.
    V.M. Pickel, T.H. Joh and D.J. Reis, A serotonergic innervation of noradrenergic neurons in nucleus locus coeruleus: demonstration by immunocytochemical localization of the transmitter specific enzymes tyrosine and tryptophan hydroxylase, Brain Res. 131: 197 (1977).PubMedCrossRefGoogle Scholar
  55. 55.
    B.D. Lewis, B. Renaud, M. Buda and J.F. Pujol, Time-course variations in tyrosine hydroxylase activity in the rat locus coeruleus after electrolytic destruction of the nuclei raphe dorsalis or raphe centralis, Brain Res. 108: 339 (1976).PubMedCrossRefGoogle Scholar
  56. 56.
    B. Renaud, M. Buda, B.D. Lewis and J.F. Pujol, Effects of 5,6dihydroxytryptamine on tyrosine-hydrcxylase activity in central catecholaminergic neurons of the rat, Biochem. Pharmacol. 24: 1739 (1975).Google Scholar
  57. 57.
    P.E. Keane, A. Degueurce, B. Renaud, F. Crespi and J.F. Pujol, Alteration of tyrosine hydroxylase and dopamine-ß-hydroxylase activity in the locus coeruleus after 5,6-dihydroxytryptamine, Neurosci. Let. 8: 143 (1978).Google Scholar
  58. 58.
    A. McRae-Degueurce and J.F. Pujol, Correlation between the increase in tyrosine hydroxylase activity and the decrease in serotonin content in the rat locus coeruleus after 5,6dihydroxytryptamine, Europ. J. Pharmacol., in press.Google Scholar
  59. 59.
    J.F. Pujol, A. McRae-Degueurce, F. Crespi, P.E. Keane, B. Renaud, L. Leger and M. Buda, Serotoninergic control of tyrosine-hydroxylase (TH) and dopamine-ß-hydroxylase (DBH) in the rat locus coeruleus (LC), in: “Catecholamines: basic and clini-dal frontiers”, vol. 1, E. Usdin, I.J. Kopin and J. Barchas, ed., Pergamon Press (1978).Google Scholar
  60. 60.
    A. Degueurce, L. Wiklund, L. Leger and J.F. Pujol, Evidences of functional serotoninergic reinnervation in rat locus coeruleus following 5,6-DHT and 5,7-DHT induced denervation, Paper presented at the IIIrd European Neuroscience Association, Annual Meeting, september 1979.Google Scholar
  61. 61.
    C. Blondaux, M. Buda, F. Petitjean and J.F. Pujol, Hypersomnie par lésion isthmique chez le chat. I - Etude du métabolisme des monoamines cérébrales, Brain Res. 88: 425 (1975).PubMedCrossRefGoogle Scholar
  62. 62.
    W. Kostowski, R. Samanin, S.R. Bareggi, V. Marc, S. Garattini and L. Valzelli, Biochemical aspects of the interaction between midbrain raphe and locus coeruleus in the rat, Brain Res. 82: 178 (1974).PubMedCrossRefGoogle Scholar
  63. 63.
    M.F. Belin, M. Aguera, M. Tappaz, A. McRae-Degueurce, P. Bobillier and J.F. Pujol, GABA-accumulating neurons in the nucleus raphe drosalis and periaqueductal gray in the rat: a biochemical and radioautographic study, Brain Res. 170: 279 (1979).PubMedCrossRefGoogle Scholar
  64. 64.
    J.F. Pujol, M.F. Belin, H. Gamrani, M. Aguera and A. Calas, Anatomical evidence for GABA-5 HT interaction in serotoninergic neurons, this symposium.Google Scholar
  65. 65.
    T. Hökfelt, A. Ljungdahl, H. Steinbusch, A. Verhofstad, G. Nilsson, E. Brodin, B. Pernow and M. Goldstein, Iiiuuunohistochemical evidence of substance p-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system, Neuroscience 3: 517 (1978).PubMedCrossRefGoogle Scholar
  66. 66.
    V. Chan-Palay, G. Jonsson and S.L. Palay, On the coexistence of serotonin and substance P in neurons of the rat’s central nervous system, Proc. Nat. Acad. Sci., U.S.A. 75: 1582 (1978).CrossRefGoogle Scholar
  67. 67.
    G.K. Aghajanian and R.Y. Wang, Physiology and pharmacology of central serotonergic neurons, in: “Psychopharmacology: a generation of progress”, M.A. Lipton, A. Dimascio and K.F. Killam, ed., Raven Press, New York (1978).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Jean-François Pujol
    • 1
  • Amanda Degueurce
    • 1
  • Jean-Paul Natali
    • 1
  • Marcel Tappaz
    • 1
  • Leif Wiklund
    • 1
  • Lucienne Leger
    • 1
  1. 1.Département de Médecine ExpérimentaleINSERM U 171 et U 52LyonFrance

Personalised recommendations