Advertisement

Serotonin pp 299-318 | Cite as

Effect of Serotonin and Melatonin on the Electrophysiological Behaviour of the Plasma Membrane

  • G. Nikitopoulou-Maratou
  • E. Georgatou
  • P. A. Molyvdas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 133)

Abstract

Although there is a great interest in 5-hydroxytryptamine (5-HT) as a neurotransmitter, rather little is known of its influence on mammalian cell membranes. Measurements of membrane conductance and ion fluxes have been carried out mostly in the neural cells of invertebrates1, 2. Investigators studying receptors in the brain are faced with the problem that these receptors are not readily accessible. Changes in the rate of neuronal discharge after intraarterial, intraventricular or microelectrophoretic injection of 5-HT in the vicinity of the serotonergic neurons have been taken to indicate an inhibitory or facilitatory effect. Its predominant effect on the neuronal function of mammals seems to be inhibitory. However, a facilitatory effect has also been found in many parts of the CNS3–8. Melatonin is possibly the only active, biological product of serotonin, affecting certain hypothalamic areas controlling mainly neuroendocrinic functions9–11. Its.overall effect is opposite to that of serotonin, at least in most of the functions studied so far12–14 However, experimental work on the effect of melatonin on the membrane is practically nonexistent. In the present work we studied the effects of serotonin and melatonin on the electrophysiological behaviour of cardiac cell membrane of dogs.

Keywords

Purkinje Cell Anionic Site Fast Action Mammalian Cell Membrane Fast Sweep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. M. Gershenfeld and E. Stefani, An electrophysiological study of 5- hydroxytryptamine receptors of neurons in the molluscan nervous system, J. Physiol. 185: 684 (1966).Google Scholar
  2. 2.
    T. Hidaka, T. Osa and B. M. Twarog, The action of 5-hydroxytryptamine on mytilus smooth muscle, J. Physiol. 192: 869 (1967).PubMedGoogle Scholar
  3. 3.
    W. P. Koella, J. R. Smythies, D. M. Bull and C. K. Levy, Physiological fractionation of the effect of serotonin on evoked potentials, Am. J. Physiol. 198: 205 (1960).PubMedGoogle Scholar
  4. 4.
    M. H. T. Robetrs and D. M. Straughan, An excitatory effect of 5hydroxytryptamine on single cerebral cortical neurones, J. Physiol. 188: 27P (1967).Google Scholar
  5. 5.
    J. W. Phillis, A. K. Tebècis, and D. H. York, Depression of spinal motoneurons by noradrenaline, 5-hydroxytryptamine and histamine, Eur. J. Pharmacol. 7: 471 (1968).CrossRefGoogle Scholar
  6. 6.
    W. P. Koella, What is the functional role of CNS Serotonin? in: “Neurosciences Research”, S. Ehrenpreis and O. C. Solnitzky, ed., Academic Press, New York (1969).Google Scholar
  7. 7.
    F. E. Bloom, B. J. Hoffer, G. R. Siggins, J. L. Barker and R. A. Nicoll, Effects of serotonin on central neurons: Microiontophotetic administration, Feder. Proc. 31 (1): 97 (1972).Google Scholar
  8. 8.
    F. E. Bloom, B. J. Hoffer and C. Nelson, The physiology and pharmacology of serotonin mediated synapses, in: “Serotonin and Behaviour”, J. Barchas and E. Usdin, ed., Academic Press, New York (1973).Google Scholar
  9. 9.
    J. R. Wurtman, J. Axelrod and E. D. Kelly, in: “The Pineal”, Academic Press, New York (1968).Google Scholar
  10. 10.
    I. A. Kamberi, R. S. Mical and J. C. Porter, Effects of melatonin and serotonin on the release of FSH and prolactin, Endocrinology 88: 1288 (1971).PubMedCrossRefGoogle Scholar
  11. 11.
    M. T. Jones, E. W. Hillhouse and J. Burden, Effect of various putative neurotransmitters on the secretion of corticotrophin - releasing hormone from the rat hypothalamus in vitro. A model of the neurotransmitters involved, J. Endocr. 69: 1 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Rahamimoff, I. Bruderman, and G. Golshani, Effect of melatonin on 5hydroxytryptamine induced contractions of isolated cat trachea, Life Sci. 4: 2281 (1955).CrossRefGoogle Scholar
  13. 13.
    M. Hertz-Eshel and R. Rahamimoff, Effect of melatonin on uterine contractility, Life Sci. 4: 1367 (1965).PubMedCrossRefGoogle Scholar
  14. 14.
    M. R. Quastel and R. Rahamimoff, Effect of melatonin on spontaneous contraction and responce to 5-hydroxytryptamine of rat isolated duodenum, Brit. J. Pharmacol. 24: 455 (1965).Google Scholar
  15. 15.
    H. Reuter, Properties of two inward membrane currents in the heart, Ann. Rev. Physiol. 41: 413 (1979).CrossRefGoogle Scholar
  16. 16.
    M. Vassalle, Electrogenesis of the plateau and pacemaker potential, Ann. Rev. Physiol. 41: 425 (1979).CrossRefGoogle Scholar
  17. 17.
    K. A. Deck and W. Trautwein, Ionic currents in cardiac excitation, Pflügers, Arch. ges. Physiol. 280: 65 (1964).Google Scholar
  18. 18.
    J. Dudel and R. Rudel, Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibers, Pflügers Arch. ges. Physiol. 315: 136 (1970).Google Scholar
  19. 19.
    H. G. Haas, R. Kern, H. M. Einwächter and M. Tarr, Kinetics of Na inactivation in frog atria, Pflügers Arch. ges. Physiol. 323: 141 (1971).Google Scholar
  20. 20.
    B. Katz and R. Miledi, A study of synaptic transmission in the absence of nerve impulses, J. Physiol. 192: 407 (1967).PubMedGoogle Scholar
  21. 21.
    B. Katz and R. Miledi, Further study of the role of calcium in synaptic transmission, J. Physiol. 207: 789 (1970).PubMedGoogle Scholar
  22. 22.
    B. Katz and R. Miledi, Tetrodotoxin resistant electric activity in presynaptic terminals, J. Physiol. 203: 459 (1979).Google Scholar
  23. 23.
    F. F. Weight, J. A. Schulman, R. A. Smith and N. A. Busis, Long-lasting synaptic potentials and the modulation of synaptic transmission, Feder. Proc. 38 (7): 2084 (1979).Google Scholar
  24. 24.
    M. Vitek and W. Trautwein, Slow inward current and action potential in car- diac Purkinje fibres. The effect of Mn ions, Pflügers Arch. ges. Physiol. 323: 204 (1971).Google Scholar
  25. 25.
    H. Reuter, Divalent cations as charge carriers in excitable membranes, in: “- Calcium Movements in Excitable Cells”, R. F. Baker and H. Reuter, ed., Pergamon Press, Oxford (1975).Google Scholar
  26. 26.
    D. L. Gilbert and G. Ehrenstein, Effect of divalent cations on potassium con- ductance of squid axons: Determination of surface charge, Biophys. J. 9: 447 (1969).PubMedCrossRefGoogle Scholar
  27. 27.
    K. Koketsu, Calcium and the excitable cell membrane, in: “Neurosciences Research”, S. Ehrenpreis and O. C. Solnitzky, ed., Academic Press, New York (1969).Google Scholar
  28. 28.
    B. Frankenhaeuser and A. L. Hodgkin, The action of calcium on the electri- cal properties of squid axons, J. Physiol. 137: 218 (1970).Google Scholar
  29. 29.
    S. N. Fishman, B. I. Khodorov and M. V. Volkenstein, Molecular mecha- nisms of membrane ionic permeability changes, Biochim. Biophys. Acta 225: 1 (1971).CrossRefGoogle Scholar
  30. 30.
    F. W. Flitney, J. F. Lamb and J. Singh, Intracellular cyclic nucleotides and contractility of the hypodynamic frog ventricle, J. Physiol. 276: 38P (1978).Google Scholar
  31. 31.
    R. Niedergerke and S. Page, Analysis of catecholamine effects in single atrial trabeculae of the frog heart, Proc. R. Soc. Lond. Ser. B. 197: 333 (1977).Google Scholar
  32. 32.
    H. Reuter and H. Scholz, The regulation of the Ca conductance of cardiac muscle by adrenaline, J. Physiol. 264: 49 (1977).PubMedGoogle Scholar
  33. 33.
    H. Reuter, Strom-Spannungsbeziehungen von Purkinje-Fasern bei verschiede- nen extracellulären Calcium-Konzentrationen und unter Adrenalineinwirkung, Pflügers Arch. ges. Physiol. 287: 357 (1966).Google Scholar
  34. 34.
    H. Reuter and H. Scholz, Ueber den Einfluss der extracellulären Ca- Konzen- tration auf Membranpotential und Kontraktion Isolierter Herzpraparäte bei graduierter Depolarization, Pflügers Arch. ges. Physiol. 300: 87 (1968).Google Scholar
  35. 35.
    J. Vereecke and E. Carmeliert, Sr action potentials in cardiac Purkinje fi- bres. II. Dependence of the Sr conductance on the external Sr concentration and Sr-Ca antagonisms, Pflügers Arch. ges. Physiol. 322: 73 (1971).Google Scholar
  36. 36.
    S. Garattini and L. Valzelli, “Serotonin”, Elsevier Publishing Co., Amster- dam (1965).Google Scholar
  37. 37.
    M. Klein and E. R. Kandel, Presynaptic modulation of voltage dependent Ca current. Mechanism for behavioral sensitization in Aplysia californica, Proc. Nati. Acad. Sci. U.S.A. 75: 3512 (1978).CrossRefGoogle Scholar
  38. 38.
    J. M. Ritchie, The sodium channel as a drug receptor, in: “Cell Membrane Receptors for Drug and Hormones. A Multidisciplinary Approach”, R. W. Straub and L. Bolis, ed., Raven Press, New York (1978).Google Scholar
  39. 39.
    J. A. Schneider and N. Sperelakis, The demonstration of energy dependence of the Isoproterenol-induced transcellular Cat+Current in isolated per-fused guinea pig hearts - An explanation for mechanical failure of ischemic myocardium, J. Surg. Res. 16: 389 (1974).Google Scholar
  40. 40.
    S. Iwasaki and Y. Sato, Sodium and calcium-dependent spike potentials in the secretory neuron soma of the X-organ of the crayfish, J. Gen. Physiol. 57: 216 (1971).PubMedCrossRefGoogle Scholar
  41. 41.
    B. Katz,“ The Release of Neuronal Transmitter Substances”,Liverpool University Press, Liverpool (1969)Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • G. Nikitopoulou-Maratou
    • 1
  • E. Georgatou
    • 1
  • P. A. Molyvdas
    • 1
  1. 1.Dpt. of Physiology, Medical SchoolUniversity of AthensAthens 609Greece

Personalised recommendations