Determination of Fundamental Acoustic Emission Signal Characteristics

  • Richard Weisinger


Techniques for solving wave propagation problems with potential uses in the area of material characterization, transducer calibration, and acoustic emission analysis are presented. The methods discussed include analytic integral transforms, normal modes, and finite elements. Synthetic waveform time histories are presented which illustrate each of the methods.


Acoustic Emission Rayleigh Wave Acoustic Emission Signal Particle Displacement Dynamic Finite Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Saito, Excitation of Free Oscillations and Surface Waves by a Point Source in a Vertically Heterogeneous Earth, J. Geophvs. Research, 72:3689–3699 (1967).CrossRefGoogle Scholar
  2. 2.
    R. Weisinger, Acoustic Emission and Lamb’s Problem on a Homogeneous Sphere, Masters’ Essay, The Johns Hopkins University, Baltimore, Maryland (1979) .Google Scholar
  3. 3.
    C. H. Chapman, A New Method for Computing Synthetic Seismograms, Geophys. J. R. Astron. Soc, 54:481–518 (1978).CrossRefGoogle Scholar
  4. 4.
    L. Cagniard, “Reflection and Refraction of Progressive Seismic Waves,” trans. Dix, C. H. and Flinn, E. A., McGraw-Hill Book Company, New York (1962).Google Scholar
  5. 5.
    N. N. Hsu, J. A. Simmons and S. C. Hardy, Acoustic Emission Signal Analysis—Theory and Experiment, Materials Evaluation, 35: 100–106 (1977).Google Scholar
  6. 6.
    N. N. Hsu and S. C. Hardy, Experiments in Acoustic Emission Analysis for Characterization of AE Sources, Sensors and Structures, Winter Meeting ASME, “Elastic Waves and Non-destructive Testing of Materials,” AMD-Vol. 29 (1978).Google Scholar
  7. 7.
    C. H. Dix, The Method of Cagniard in Seismic Pulse Problems, Geophysics, 19:722–738 (1954).CrossRefGoogle Scholar
  8. 8.
    A. T. deHoop, A Modification of Cagniard’s Methods for Solving Seismic Pulse Problems, Appl. Sci. Res., 8B:349–356 (1961).CrossRefGoogle Scholar
  9. 9.
    F. Abramovici, A Generalization of the Cagniard Method, Journal of Computational Physics, 29:328–343 (1978).CrossRefGoogle Scholar
  10. 10.
    H. Bateman and C. L. Pekeris, Transmission of Light from a Point Source in a Medium Bounded by Diffusely Reflecting Parallel Plane Surfaces, J. Optical Soc., 35:645–655 (1945).Google Scholar
  11. 11.
    H. R. Aggarwal and C. M. Ablow, Solution to a Class of Three-Dimensional Pulse Propagation Problems in an Elastic Half-Space, Int. J. Engng. Sci., 5:663–679 (1967).CrossRefGoogle Scholar
  12. 12.
    I. M. Longman, Computation of Theoretical Seismograms, Geophys. J., 21:295–305 (1970).CrossRefGoogle Scholar
  13. 13.
    I. M. Longman, Best Rational Function Approximation for Laplace Transform Inversion, SIAM J. Math. Anal., 5:574–580 (1974).CrossRefGoogle Scholar
  14. 14.
    I. M. Longman and T. Beer, The Solution of Theoretical Seismic Problems by Best Rational Function Approximations for Laplace Transform Inversion, Bull. Seis. Soc. Am. 65:927–935 (1975).Google Scholar
  15. 15.
    H. Lamb, On the Propagation Tremors Over the Surface of an Elastic Solid, Phil. Trans. Royal Soc. London, A203:1–42 (1904).Google Scholar
  16. 16.
    C. L. Pekeris, The Seismic Surface Pulse, Proc. Nat. Acad. Sci., 41:469–480 (1955).CrossRefGoogle Scholar
  17. 17.
    C. C. Chao, Dynamic Response of an Elastic Half-Space to Tangential Surface Loadings, J. Appl. Mech., 27:559–567 (1960).CrossRefGoogle Scholar
  18. 18.
    D. C. Gakenheimer, Transient Excitation of an Elastic Half-space by a Point Load Traveling on the Surface, J. Appl. Mech., 26:505–515 (1969).CrossRefGoogle Scholar
  19. 19.
    A. Roy, Surface Displacements in an Elastic Half-Space Due to a Buried Moving Point Source, Geophys. J. R. Astron. Soc, 40: 289–304 (1974).CrossRefGoogle Scholar
  20. 20.
    O. C. Zienkiewicz, “The Finite Element Method,” third edition, McGraw-Hill Book Company, New York (1977) .Google Scholar
  21. 21.
    H. M. Mooney, Some Numerical Solutions for Lamb’s Problem, Bull. Seis. Soc. Am., 64: 473–491 (1974).Google Scholar
  22. 22.
    F. R. Breckenridge, C. G. Tschiegg and M. Greenspan, Acoustic Emission: Some Applications of Lamb’s Problem, J. Acous. Soc. Am., 57:626–631 (1974).CrossRefGoogle Scholar
  23. 23.
    J. F. Bell, On the History of Some Recent Measurements Described in Experimental Mechanics, 17:359–360 (1977) .Google Scholar
  24. 24.
    J. F. Bell, The Experimental Foundations of Solid Mechanics,”Handbuch der Physik,” VIa/1, Springer-Verlag (1973).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Richard Weisinger
    • 1
  1. 1.Materials Science DepartmentThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations