Anisotropic Elastic Constants of a Fiber-Reinforced Boron-Aluminum Composite

  • S. K. Datta
  • H. M. Ledbetter


Elastic constants, both the Cij’s and the Sij’s, were measured and calculated for a laminated, uniaxially fiber-reinforced boron-aluminum composite. Three theoretical models were considered: square-array, hexagonal-array, and random-distribution. By combining several existing theoretical studies on randomly distributed fibers, a full set of elastic constants can be predicted for this model. The random-distribution model agrees best with observation, especially for off-diagonal elastic constants. Considering all nine elastic constants, observation and theory differ on the average by six percent.


Longitudinal Wave Elastic Constant Random Model Lame Constant Independent Elastic Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Bert, Experimental characterization of composites, in: “Composite Materials, Volume 8, Structural Design and Analysis”, Academic, New York (1975).Google Scholar
  2. 2.
    G. P. Sendeckyj, Elastic behavior of composites, in: “Mechanics of Composite Materials, Volume 2”, Academic, New York (1974).Google Scholar
  3. 3.
    H. M. Ledbetter, N. V. Frederick, and M. W. Austin, Elastic-constant variability in stainless-steel 304, J. Appl . Phys. 51:305(1980).Google Scholar
  4. 4.
    H. M. Ledbetter, Dynamic elastic modulus and internal friction in fibrous composites, in: “Nonmetallic Materials and Composites at Low Temperatures”, Plenum, New York (1979).Google Scholar
  5. 5.
    H. M. Ledbetter and D. T. Read, Orthorhombic elastic constants of an NbTi/Cu composite superconductor, J. Appl. Phys. 48:1874 (1977).CrossRefGoogle Scholar
  6. 6.
    D. T. Read and H. M. Ledbetter, Elastic properties of a boron-aluminum composite at low temperatures, J. Appl. Phys. 48:2827 (1977).CrossRefGoogle Scholar
  7. 7.
    K. A. Gschneidner, Physical properties and interrelationships of metallic and semimetallic elements, in: “Solid State Physics, Volume 16”, Academic, New York (1954).Google Scholar
  8. 8.
    J. D. Achenbach, Generalized continuum models for directionally reinforced solids, Arch. Mech. 28:257 (1976).Google Scholar
  9. 9.
    M. Hlavacek, A continuum theory for fibre-reinforced composites, Int. J. Solids Structures 11:199 (1975).CrossRefGoogle Scholar
  10. 10.
    S. K. Bose and A. K. Mal, Longitudinal shear waves in a fiber-reinforced composite, Int. J. Solids Structures 9:1075 (1973).CrossRefGoogle Scholar
  11. 11.
    S. K. Bose and A. K. Mal, Elastic waves in a fiber-reinforced composite, J. Mech. Phys. Solids 22:217 (1974).CrossRefGoogle Scholar
  12. 12.
    Z. Hashin and B. W. Rosen, The elastic moduli of fiber-reinforced materials, J. Appl. Mech. 31:223 (1964).CrossRefGoogle Scholar
  13. 13.
    Z. Hashin, Theory of composite materials, in: “Mechanics of Composite Materials”, Pergamon, Oxford (1970).Google Scholar
  14. 14.
    R. Hill, Theory of mechanical properties of fibre-strengthened materials — III. Self-consistent model, J. Mech. Phys. Solids: 189 (1965).Google Scholar
  15. 15.
    J. J. Hermans, The elastic properties of fiber reinforced materials when the fibers are aligned, Proc. K. Ned. Akad. Wet. B70:1 (1967).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • S. K. Datta
    • 1
  • H. M. Ledbetter
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA
  2. 2.Fracture and Deformation DivisionNational Bureau of StandardsBoulderUSA

Personalised recommendations