Advertisement

Lithium-Aluminum/Iron Sulfide Batteries

  • Donald R. Vissers
Part of the NATO Conference Series book series (NATOCS, volume 2)

Abstract

High-temperature rechargeable batteries are under development for electric-vehicle propulsion and for stationary energy-storage applications. These cells utilize a molten salt electrolyte such as LiCl-KC1 eutectic (mp, 352°C), negative electrodes of either Li-Si or Li-Al alloy, and positive electrodes of either FeS or FeS2. Over the past seven years, several hundred engineering cells with different designs have been tested, some of which have achieved specific energies of >100 W-hr/kg and specific powers of >80 W/kg at 50% depth of discharge, other cells have operated for >1000 cycles. During 1979, Eagle-Picher Industries completed fabrication of the first full-scale (40 kW-hr) Li/MS battery, which consisted of two 20 kW-hr modules (60 cells each) housed in a thermally insulated case. Testing of this battery has been indefinitely delayed due to the unexpected short-circuit of one of the modules during heat up. The fabrication of other full-scale batteries is planned in the coming years.

Keywords

Boron Nitride Electric Vehicle Current Collector Negative Electrode Positive Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Nelson et al., High Performance Batteries for Electric-Vehicle Propulsion and Stationary Energy Storage: Progress Report for the Period October 1978-March 1979, Argonne National Laboratory Report ANL-79-39 (May 1979).Google Scholar
  2. 2.
    P. A. Nelson et al., High Performance Batteries for Electric-Vehicle Propulsion and Stationary Energy Storage: Progress Report for the Period October 1977-September 1978, Argonne National Laboratory Report ANL-78-94 (November 1978).Google Scholar
  3. 3.
    P. A. Nelson, A. A. Chilenskas, and R. K. Steunenberg, Proc. Fifth International Electric Vehicle Symposium (E.V. Council, New York), Paper No. 783104, (1978).Google Scholar
  4. 4.
    M. L. Kyle, E. J. Cairns, and D. S. Webster, Lithium/Sulfur Batteries for Off-Peak Energy Storage: A Preliminary Comparison of Energy Storage and Peak Power Generator Systems, E.R.D.A. Report No. ANL-7948, Argonne National Laboratory (1973).Google Scholar
  5. 5.
    P. A. Nelson and N. P. Yao, Proc. Amer. Power Conf. 38, 1381 (1976).Google Scholar
  6. 6.
    P. A. Nelson et al., High-Performance Batteries for Off-Peak Energy Storage and Electric Vehicle Propulsion: Progress Report for the Period July–September 1976, Argonne National Laboratory ANL-76-98 (December 1976).Google Scholar
  7. 7.
    P. A. Nelson et al., Development of Lithium/Metal Sulfide Batteries at Argonne National Laboratory: Summary Report for 1977, Argonne National Laboratory Report ANL-78-20 (March 1978).Google Scholar
  8. 8.
    N. P. Yao, L. A. Heredy, and R. C. Saunders, J. Electrochem. Soc., 118, 1039 (1971).CrossRefGoogle Scholar
  9. 9.
    E. C. Gay, D. R. Vissers, F. J. Martino, and K. E. Anderson, J. Electrochem. Soc., 123, 1591 (1976).CrossRefGoogle Scholar
  10. 10.
    E. J. Zietner, Jr. and J. S. Dunning, High Performance Lithium/ Iron Disulfide Cells, Proc. 13th IECEC, pp. 697-701 (1978).Google Scholar
  11. 11.
    L. R. McCoy, S. Sudar, L. A. Heredy and J. C. Hall, Lithium Silicon-Iron Sulfide Load Leveling and Electric Vehicle Batteries, Proc. 13th LECEC, pp. 702-708 (1978).Google Scholar
  12. 12.
    D. R. Vissers, Z. Tomczuk and R. K. Steunenberg, J. Electrochem. Soc. 121, 665 (1974).CrossRefGoogle Scholar
  13. 13.
    J. P. Mathers, C. W. Boquist, and T. W. Olszanski, J. Electrochem. Soc., 125, 1913 (1978).CrossRefGoogle Scholar
  14. 14.
    J. P. Mathers and T. W. Olszanski, J. Electrochem. Soc., 124, 1149 (1977).CrossRefGoogle Scholar
  15. 15.
    K. M. Myles, F. C. Mrazek, J. A. Smaga, and J. L. Settle, Materials Development in Lithium/Iron Sulfide Battery Program at Argonne National Laboratory, Proc. Symp. and Workshop on Adv. Battery Research and Design, Argonne National Laboratory Report ANL-76-8, p. B-50 (March 1976).Google Scholar
  16. 16.
    E. R. Van Artsdalen and I. S. Yaffe, J. Phys. Chem. 59, 118 (1955).CrossRefGoogle Scholar
  17. 17.
    J. A. Plambeck, J. Chem. Eng. Data 12, 77 (1967).CrossRefGoogle Scholar
  18. 18.
    H. Shimotake, M. L. Kyle, V. Maroni, and E. J. Cairns, Proc. 1st Int. Electric Vehicle Symp., Electric Vehicle Council, p. 392, New York (1969).Google Scholar
  19. 19.
    M. L. Kyle, H. Shimotake, R. K. Steunenberg, F. J. Martino, R. Rubischko, and E. J. Cairns, 6th IECEC, p. 80, New York (1971).Google Scholar
  20. 20.
    J. R. Selman, D. K. DeNuccio, C. C. Sy, and R. K. Steunenberg, J. Electrochem. Soc. 124, 1160–1164 (August 1977).CrossRefGoogle Scholar
  21. 21.
    R. A. Sharma and R. N. Seefurth, J. Electrochem. Soc. 123, 1763 (1976).CrossRefGoogle Scholar
  22. 22.
    F. A. Shunk, Constitution of Binary Alloys, Second Supplement, p. 480, McGraw-Hill Book Co., New York (1969).Google Scholar
  23. 23.
    S. C. Lai, J. Electrochem. Soc. 123, 1196 (1976).CrossRefGoogle Scholar
  24. 24.
    D. R. Vissers, W. Frost, K. E. Anderson, and M. F. Roche, Argonne National Laboratory, unpublished data (1976).Google Scholar
  25. 25.
    E. C. Gay, R. K. Steunenberg, J. E. Battles, and E. J. Cairns, Proc. 8th IECEC p. 9-, AIAA, New York (1973).Google Scholar
  26. 26.
    W. Giggenbach, Inor. Chem. 10, 1308 (1971).CrossRefGoogle Scholar
  27. 27.
    D. M. Gruen, R. L. McBeth, and A. J. Zielen, J. Am. Chem. Soc., 93, 6691 (1971).CrossRefGoogle Scholar
  28. 28.
    L. A. Heredy et al., Metal Sulfide Electrodes for Secondary Lithium Batteries: New Uses of Sulfur, J. R. West, Ed., pp. 203–215, ADV. Chem. Ser. 140, ACS, Washington (1975).Google Scholar
  29. 29.
    R. C. Weast, S. M. Selby, and C. D. Hodgman, Eds., Handbook of Chemistry and Physics, 45th Ed., The Chemical Rubber Co., Cleveland (1964).Google Scholar
  30. 30.
    E. J. Cairns and J. S. Dunning, High-Temperature Batteries, Proc Symp. and Workshop on Adv. Battery Research and Design, Argonne National Laboratory Report ANL-76-8, p. A-81.Google Scholar
  31. 31.
    K. C. Mills, Thermodynamic Data for Inorganic Sulfides, Selenides and Tellurides, Butterworths, London (1974).Google Scholar
  32. 32.
    A. E. Martin, Z. Tomczuk, and M. F. Roche, Argonne National Laboratory Report ANL-78-94, p. 167.Google Scholar
  33. 33.
    Z. Tomczuk, M. F. Roche, and A. E. Martin, in Argonne National Laboratory Report ANL-79-39, p. 66.Google Scholar
  34. 34.
    B. Tani, American Mineralogist, 62, 819 (1977).Google Scholar
  35. 35.
    F. C. Mrazek and J. E. Battles, High Performance Batteries for Off-Peak Energy Storage and Electric Vehicle Propulsion: Progress Report for the period July to December 1974, Eds., P. A. Nelson et al., Argonne National Laboratory Report ANL-75-1, p. 91 (July 1975).Google Scholar
  36. 36.
    M. L. Saboungi, J. J. Marr, and M. Blander, J. Electrochem. Soc, 125, 1567 (1968).CrossRefGoogle Scholar
  37. 37.
    Z. Tomczuk and A. E. Martin, Argonne National Laboratory, unpublished data (1979).Google Scholar
  38. 38.
    A. E. Martin and Z. Tomczuk, High Performance Batteries for Stationary Energy Storage and Electric Vehicle Propulsion: Progress Report for the Period October–December 1976, Eds., P. A. Nelson et al., ANL-17-17, pp. 45-46 (April 1977).Google Scholar
  39. 39.
    M. L. Saboungi and A. E. Martin, Extended Abstracts of the Electrochem. Soc. Meeting, Pittsburgh, PA, October 15–20, 1978, Vol. 78-2, p. 919 (1978).Google Scholar
  40. 40.
    D. R. Vissers, K. E. Anderson, C. K. Ho, and H. Shimotake, Proc. of the Symp. on Battery Design and Optimization, Ed., S. Gross, Electrochem. Soc. 79-1, 416 (1979).Google Scholar
  41. 41.
    J. Braunstein and C. E. Vallet, J. Electrochem. Soc., 126, 960 (1979).CrossRefGoogle Scholar
  42. 42.
    John Newman and Richard Pollard, unpublished work, Univ. of California, Berkeley (1979).Google Scholar
  43. 43.
    Z. Tomczuk, A. E. Martin, and R. K. Steunenberg, The Chemistry of the FeS Electrode of Li/FeS Cells, Extended Abstract No. 47 of Electrochemical Society Fall Meeting, Las Vegas, Nev., October 17–22, 1976.Google Scholar
  44. 44.
    J. E. Battles, J. A. Smaga, and K. M. Myles, Metallurgical Trans. 9A, 183 (1978).CrossRefGoogle Scholar
  45. 45.
    J. E. Battles, Materials for High Temperature Li-Al/FeS Secondary Batteries, Critical Materials Problems in Energy Production, Ed., C. Stein, Academic Press, New York (1978).Google Scholar
  46. 46.
    D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd Ed., NSRDS-NBS-37, U. S. National Bureau of Standards, June 1971.Google Scholar
  47. 47.
    C. E. Wichs and F. E. Block, Thermodynamic Properties of 65 Elements-Their Oxides, Halides, Carbides and Nitrides, U. S. Bureau of Mines Bull. 605 (1963).Google Scholar
  48. 48.
    R. M. Yonco, E. Veleckis, and V. A. Maroni, J. Nucl. Mater. 57, 317 (1975).CrossRefGoogle Scholar
  49. 49.
    R. Hudson and K. Gentry, The Design, Development, and Fabrication of a 40 kW-hr Lithiurn/Iron Sulfide Electric Vehicle Battery, Extended Abstract No. 91, Electrochemical Society, Fall Meeting, Pittsburgh, PA, October 15–20, 1978.Google Scholar
  50. 50.
    F. J. Martino, T. D. Kaun, H. Shimotake, and E. C. Gay, Proc. 13th IECEC, pp. 709-716 (1978).Google Scholar
  51. 51.
    E. C. Gay, W. E. Miller, R. F. Malecha, and R. C. Elliott, Proc. 13th IECEC, pp. 6900696 (1978).Google Scholar
  52. 52.
    K. M. Myles and J. L. Settle, in Argonne National Laboratory Report ANL-77-17, pp. 31-33.Google Scholar
  53. 53.
    P. A. Nelson et al., Development of Lithium/Metal Sulfide Batteries at Argonne National Laboratory: Summary Report for 1975, Argonne National Laboratory Report ANL-76-45, (March 1976).Google Scholar
  54. 54.
    P. A. Nelson et. al., Development of Lithium/Metal Sulfide Batteries at Argonne National Laboratory: Summary Report for 1974, Argonne National Laboratory Report ANL-75-20, (March 1975).Google Scholar
  55. 55.
    V. M. Kolba, G. W. Redding, and J. L. Hamilton, High Performance Batteries for Stationary Energy Storage and Electric Vehicle Propulsion: Progress Report for January-March 1977, Ed., P. A. Nelson et a1., Argonne National Laboratory Report ANL-77-35, pp. 24-28 (June 1977).Google Scholar
  56. 56.
    W. Deluca, A. Chilenskas, and F. Hornstra, To be published in the Proc. of the 14th IECEC Meeting, Boston, MA (1979).Google Scholar
  57. 57.
    P. A. Nelson et al., Development of Lithium/Metal Sulfide Batteries at Argonne National Laboratory: Summary Report for 1978, Argonne National Laboratory Report ANL-79-64 (July 1979).Google Scholar
  58. 58.
    S. M. Zivi, I. Pollach, H. Kacinskas, A. A. Chilenskas, D. L. Barney, S. Sudar, I. Goldstein, and W. Grieve, Battery Engineering Problems in Designing An Electrical Load Leveling Plant for Lithium/Iron Sulfide Cells, To be published in the Proceedings of the 14th IECEC, Boston, MA (1979).Google Scholar
  59. 59.
    A. A. Chilenskas, Argonne National Laboratory Report ANL-77-75, p. 12.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Donald R. Vissers
    • 1
  1. 1.Argonne National LaboratoryArgonneCanada

Personalised recommendations