Molecular Mechanism of Pyrimidine Dimer Excision in Saccharomyces cerevisiae. I. Studies with Intact Cells and Cell-Free Systems

  • Richard J. Reynolds
  • Errol C. Friedberg
Part of the Basic Life Sciences book series (BLSC, volume 15)


We have investigated a number of aspects of the excision of pyrimidine dimers from the DNA of wild-type and UV sensitive mutants of the yeast Saccharomyces cerevisiae. Our studies show that a number of rad mutants in the RAD3 group (rad1-2, rad1-11; rad2-2, rad2-4; rad3−l; rad4−2, rad4−3) that are defective relative to wild-type strains in pyrimidine dimer excision in vivo, are also defective in the production of single strand breaks in their DNA during post-UV incubation. The presence of UV-induced incubation-independent single-strand breaks prevents definitive conclusions regarding the role of various RAD loci in the incision process but provides evidence of a biochemical subdivision in the RAD3 group loci. Using UV irradiated DNA preincised with dimer-specific endonuclease activity from Micrococcus luteus, we have also detected enzymatic activity from extracts of wild-type yeast that catalyzes the selective excision of thymine-containing pyrmidine dimers. Normal levels of this activity are present in all mutant strains thus far examined (rad1-11; rad2-4; rad3−l; rad4−3).

Thus, in Saccharomyces cerevisiae it appears that at least four of the nine genetic loci governing pyrimidine dimer excision affect events associated with DNA incision or preincision. This situation is strikingly analagous to that observed with the numerous complementation groups in the human disease xeroderma pigmentosum.


Nucleotide Excision Repair Single Strand Break Xeroderma Pigmentosum Micrococcus Luteus Pyrimidine Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arlett, C. F., and A. R. Lehmann, Human disorders showing increased sensitivity to the induction of genetic damage, Ann. Rev. Genet., 12 (1978) 95–115.PubMedCrossRefGoogle Scholar
  2. 2.
    Cabib, E., Yeast spheroplasts, In: Methods in Enzymology, Vol. 22, W. B. Jakoby (Ed.), Academic Press, New York, 1971, pp. 120–122.Google Scholar
  3. 3.
    Carrier, W. L., and R. B. Setlow, Endonuclease from Micrococcus luteus which has activity toward ultraviolet-irradiated deoxyribonucleic acid: purification and properties, J. Bacteriol., 102 (1970) 178–186.PubMedGoogle Scholar
  4. 4.
    Cleaver, J. E., Nucleosome structure controls rates of excision repair in DNA of human cells, Nature, 270 (1977) 451–453.PubMedCrossRefGoogle Scholar
  5. 5.
    Cleaver, J. E., and D. Bootsma, Xeroderma pigmentosum: biochemical and genetic characteristics, Ann. Rev. Genet., 9 (1975) 19–38.PubMedCrossRefGoogle Scholar
  6. 6.
    Cook, K., E. C. Friedberg, H. Slor, and J. E. Cleaver, Excision of thymine dimers from specifically incised DNA by extracts of xeroderma pigmentosum cells, Nature, 256 (1975) 235–236.PubMedCrossRefGoogle Scholar
  7. 7.
    Cook, K. H., and E. C. Friedberg, Multiple thymine dimer excising nuclease activities in extracts of human KB cells, Biochemistry 17 (1978) 850–857.PubMedCrossRefGoogle Scholar
  8. 8.
    Cox, B., and J. Game, Repair systems in Saccharomyces, Mutat. Res., 26 (1974) 257–264.PubMedCrossRefGoogle Scholar
  9. 9.
    Friedberg, E. C., U. K. Ehmann, and J. I. Williams, Human diseases associated with defective DNA repair, In: Advances in Radiation Biology, Vol. 8, J. T. Lett and H. Adler (Eds.), Academic Press, New York, 1979, in press.Google Scholar
  10. 10.
    Friedberg, E. C., and J. J. King, Dark repair of ultravioletirradiated deoxyribonucleic acid by bacteriophage T4: purification and characterization of a dimer-specific phage-induced endonuclease, J. Bacteriol., 106 (1971) 500–507.PubMedGoogle Scholar
  11. 11.
    Friedberg, E. C., J. M. Rudé, K. H. Cook, U. K. Ehmann, K. Mortelmans, J. E. Cleaver, and H. Slor, Excision repair in mammalian cells and the current status of xeroderma pigmentosum, In: DNA Repair Processes, W. W. Nichols and D. G. Murphy (Eds.), Symposia Specialists, Miami, 1977, pp. 21–36.Google Scholar
  12. 12.
    Grossman, L., S. Riazudden, W. Haseltine, and C. Lindan, Nucleotide excision repair of damaged DNA, Cold Spring Harbor Symp. Quant. Biol., 43, (1979) 947–955.PubMedCrossRefGoogle Scholar
  13. 13.
    Hanawalt, P. C., P. K. Cooper, A. K. Ganesan, and C. A. Smith, DNA repair in bacteria and mammalian cells, Ann. Rev. Biochem. 48 (1979) 783–836.PubMedCrossRefGoogle Scholar
  14. 14.
    Haynes, R. H., B. J. Barclay, F. Eckhardt, O. Landman, B. Kunz, and J. G. Little, Genetic control of DNA repair in yeast, In: Proceedings of the XIV International Congress on Genetics, Moscow, in press.Google Scholar
  15. 15.
    Kaplan, J. C., S. R. Kushner, and L. Grossman, Enzymatic repair of DNA. I. Purification of two enzymes involved in the excision of thymine dimers from ultraviolet-irradiated DNA, Proc. Natl. Acad. Sci. (U.S.), 63 (1969) 144–151.CrossRefGoogle Scholar
  16. 16.
    Lowry, O. H., N. J. Rosebrough, A. L. Farr, R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193 (1951) 265–275.PubMedGoogle Scholar
  17. 17.
    Morowitz, H. J., Absorption effects in volume irradiation of microorganisms, Science, 111 (1950) 229–230.PubMedCrossRefGoogle Scholar
  18. 18.
    Mortelmans, K., E. C. Friedberg, H. Slor, G. Thomas, and J. E. Cleaver, Defective thymine dimer excision by cell-free extracts of xeroderma pigmentosum cells, Proc. Natl. Acad. Sci. (U.S.), 73 (1976) 2757–2761.CrossRefGoogle Scholar
  19. 19.
    Nakaryama, H., S. Okubo, and Y. Takagi, Repair of ultraviolet-damaged DNA in Micrococcus lysodeikticus. I. An endonuclease specific for ultraviolet-irradiated DNA, Biochim. Biophys. Acta, 228 (1971) 67–82.Google Scholar
  20. 20.
    Prakash, L., Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light, J. Mol. Biol., 98 (1975) 781–795.PubMedCrossRefGoogle Scholar
  21. 21.
    Prakash, L., Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6 and rad9 of Saccharomyces cerevisiae, Mutat. Res., 45 (1977) 13–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Prakash, L., Defective thymine dimer excision in radiation-sensitive mutants rad10 and radl6 of Saccharomyces cerevisiae, Mol. Gen. Genet., 152 (1977) 125–128.PubMedCrossRefGoogle Scholar
  23. 23.
    Prakash, L., and S. Prakash, Pathways of DNA repair in yeast, In: DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, and C. F. Fox (Eds.), Academic Press, New York, 1978, pp. 413–416.Google Scholar
  24. 24.
    Resnick, M. A., and J. K. Setlow, Repair of pyrimidine dimer damage induced in yeast by ultraviolet light, J. Bacteriol., 109 (1972) 979–986.PubMedGoogle Scholar
  25. 25.
    Reynolds, R. J., Removal of pyrimidine dimers from Saccharomyces cerevisiae nuclear DNA under nongrowth conditions as detected by a sensitive, enzymatic assay, Mutat. Res., 50 (1978) 43–56.PubMedCrossRefGoogle Scholar
  26. 26.
    Reynolds, R. J., K. H. Cook, and E. C. Friedberg, The measurement of thymine-containing pyrimidine dimers in DNA by one-dimensional thin-layer chromatography, In: Handbook of DNA Repair Techniques, E. C. Friedberg and P. C. Hanawalt (Eds.), Marcel Dekker, New York, in press.Google Scholar
  27. 27.
    Setlow, J. K., The effects of ultraviolet radiation and photoreactivation, In: Comprehensive Biochemistry, Vol. 27, M. Florkin and E. H. Stotz (Eds.), Elsevier, Amsterdam, 1967, pp. 157–209.Google Scholar
  28. 28.
    Setlow, R. B., Repair deficient human disorders and cancer, Nature, 271 (1978) 713–717.PubMedCrossRefGoogle Scholar
  29. 29.
    Smerdon, M. J., and M. W. Lieberman, Nucleosome rearrangement in human chromatin during UV-induced DNA repair synthesis, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 4238–4241.CrossRefGoogle Scholar
  30. 30.
    Smerdon, M. J., T. D. Tlsty, and M. W. Lieberman, Distribution of ultraviolet-induced DNA repair synthesis in nuclease sensitive and resistant regions in human chromatin, Biochemistry, 17 (1978) 2377–2386.PubMedCrossRefGoogle Scholar
  31. 31.
    Snow, R., Mutants of yeast sensitive to ultraviolet light, J. Bacteriol., 94 (1967) 571–575.PubMedGoogle Scholar
  32. 32.
    Unrau, P., R. Wheatcroft, and B. S. Cox, The excision of pyrimidine dimers from DNA of ultraviolet irradiated yeast, Mol. Gen. Genet., 113 (1971) 359–362.PubMedCrossRefGoogle Scholar
  33. 33.
    Waters, R., and E. Moustacchi, The disappearance of ultraviolet-induced pyrimidine dimers from the nuclear DNA of exponential and stationary phase cells of Saccharomyces cerevisiae following various post-irradiation treatments, Biochim. Biophys. Acta, 353 (1974) 407–419.PubMedGoogle Scholar
  34. 34.
    Williams, J. I., and E. C. Friedberg, DNA excision repair in chromatin after ultraviolet irradiation of human fibroblasts in culture, Biochemistry, 18 (1979) 3965–3972.PubMedCrossRefGoogle Scholar
  35. 35.
    Yasuda, S., and M. Sekiguchi. T4 endonuclease involved repair of DNA, Proc. Natl. Acad. Sci. (U.S.), 67 (1970) 1839–1845.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Richard J. Reynolds
    • 1
  • Errol C. Friedberg
    • 1
  1. 1.Laboratory of Experimental Oncology, Department of PathologyStanford UniversityStanfordUSA

Personalised recommendations