Genetic and Physiological Factors Affecting Repair and Mutagenesis in Yeast

  • Jeffrey F. Lemontt
Part of the Basic Life Sciences book series (BLSC, volume 15)


Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various “pathways” of repair are described, particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as “cell age,” DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis.


Saccharomyces Cerevisiae Pyrimidine Dimer Mitotic Recombination Forward Mutation General Amino Acid Permease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ananthaswamy, H. N., T. J. McKey, and R. K. Mortimer, Isolation and characterization of additional x-ray sensitive mutants of Saccharomyces cerevisiae (abs.), Ninth International Conference on Yeast Genetics and Molecular Biology, Rochester, N.Y., 1978, p. 45.Google Scholar
  2. 2.
    Averbeck, D., W. Laskowski, E. Eckardt, and E. Lehmann-Brauns, Four radiation sensitive mutants of Saccharomyces. Survival after UV-and x-ray-irradiation as well as UV-induced reversion rates from isoleucine-valine dependence to independence, Mol. Gen. Genet., 107 (1970) 117–127.PubMedCrossRefGoogle Scholar
  3. 3.
    Bacila, M., B. L. Horecker, and A. O. M. Stoppani (Eds.), Biochemistry and Genetics of Yeast, Academic Press, New York, 1978.Google Scholar
  4. 4.
    Baker, B., A. T. C. Carpenter, M. S. Esposito, R. E. Esposito and L. Sandler, The genetic control of meiosis, Ann. Rev. Genet., 10 (1976) 53–134.PubMedCrossRefGoogle Scholar
  5. 5.
    Bandlow, W., R. J. Schweyen, K. Wolf, and F. Kaudewitz (Eds.), Mitochondria 1977. Genetics and Biogenesis of Mitochondria, Walter de Gruyter, New York, 1977.Google Scholar
  6. 6.
    Beam, C. A., R. K. Mortimer, R. G. Wolfe, and C. A. Tobias, The relation of radioresistance to budding in Saccharomyces cerevisiae, Arch. Biochem. Biophys., 49 (1954) 110–122.PubMedCrossRefGoogle Scholar
  7. 7.
    Boram, W. R., and H. Roman, Recombination in Saccharomyces cerevisiae: A DNA repair mutation associated with elevated mitotic gene conversion, Proc. Natl. Acad. Sci. (U.S.), 73 (1976) 2828–2832.CrossRefGoogle Scholar
  8. 8.
    Bridges, B. A., Mechanisms of radiation mutagenesis in cellular and subcellular systems, Ann. Rev. Nucl. Sci., 19 (1969) 139–178.CrossRefGoogle Scholar
  9. 9.
    Bridges, B. A., R. P. Mottershead, and S. G. Sedgwick, Mutagenic DNA repair in Escherichia coli. III. Requirement for a function of DNA polymerase III in ultraviolet-light mutagenesis, Mol. Gen. Genet., 144 (1976) 53–58.PubMedCrossRefGoogle Scholar
  10. 10.
    Bridges, B. A., and R. J. Munson, The persistence through several replication cycles of mutation-producing pyrimidine dimers in a strain of Escherichia coli deficient in excision-repair, Biochem. Biophys. Res. Commun., 30 (1968) 620–624.PubMedCrossRefGoogle Scholar
  11. 11.
    Brusick, D. J., Induction of cycloheximide-resistant mutants in Saccharomyces cerevisiae with N-methyl-N′-nitro-N-nitroso-guanidine and ICR-170, J. Bacteriol., 109 (1972) 1134–1138.PubMedGoogle Scholar
  12. 12.
    Caillet-Fauquet, P., M. Defais, and M. Radman, Molecular mechanisms of induced mutagenesis. Replication in vivo of bacteriophage øx174 single-stranded, ultraviolet light-irradiated DNA in intact and irradiated host cells, J. Mol. Biol., 117 (1977) 95–112.PubMedCrossRefGoogle Scholar
  13. 13.
    Chanet, R., M. Heude, and E. Moustacchi, Variations in UV-induced lethality and “petite” mutagenesis in synchronous culture of Saccharomyces cerevisiae. II. Responses of radiosensitive mutants to lethal damage, Mol. Gen. Genet., 132 (1974) 23–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Chanet, R., R. Waters, and E. Moustacchi, The induction of pyrimidine dimers in nuclear DNA after UV-irradiation during the synchronous cycle of Saccharomyces cerevisiae, Int. J. Radiat. Biol., 27 (1975) 481–485.CrossRefGoogle Scholar
  15. 15.
    Chanet, R., D. H. Williamson, and E. Moustacchi, Cyclic variations in killing and “petite” mutagenesis induced by ultraviolet light in synchronized yeast strains, Biochim. Biophys. Acta, 324 (1973) 290–299.PubMedGoogle Scholar
  16. 16.
    Chasin, L. A., Mutation affecting adenine phosphoribosyl transferase activity in Chinese hamster cells, Cell, 2 (1974) 37–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Chu, B. C. F., D. M. Brown, and M. G. Burdon, Effect of nitrogen and of catalase on hydroxylamine and hydrazine mutagenesis, Mutat. Res., 20 (1973) 265–270.PubMedCrossRefGoogle Scholar
  18. 18.
    Clark, A. J., and A. D. Margulies, Isolation and characterization of recombination-deficient mutants of Escherichia coli K12, Proc. Natl. Acad. Sci. (U.S.), 53 (1965) 451–459.CrossRefGoogle Scholar
  19. 19.
    Cox, B. S., Pathways of UV repair and mutagenesis in Saccharomyces cerevisiae, In: Research in Photobiology, A. Castellani (Ed.), Plenum Press, New York, 1976, pp. 689–697.Google Scholar
  20. 20.
    Cox, B. S., and E. A. Bevan, Aneuploidy in yeast, New Phytol., 61 (1962) 342–355.CrossRefGoogle Scholar
  21. 21.
    Cox, B. S., and J. Game, Repair systems in Saccharomyces, Mutat. Res., 26 (1974) 257–264.PubMedCrossRefGoogle Scholar
  22. 22.
    Cox, B. S., and J. M. Parry, The isolation, genetics and survival characteristics of ultraviolet light-sensitive mutants in yeast, Mutat. Res., 6 (1968) 37–55.PubMedCrossRefGoogle Scholar
  23. 23.
    Crandall, M., R. Egel, and V. L. MacKay, Physiology of mating in three yeasts, Adv. Microb. Physiol., 15 (1977) 307–398.PubMedCrossRefGoogle Scholar
  24. 24.
    Culotti, J., and L. H. Hartwell, Genetic control of the cell division cycle. III. Seven genes controlling nuclear division, Exp. Cell Res., 67 (1971) 389–401.PubMedCrossRefGoogle Scholar
  25. 25.
    Davies, P. J., R. S. Tippins and J. M. Parry, Cell-cycle variations in the induction of lethality and mitotic recombination after treatment with UV and nitrous acid in the yeast, Saccharomyces cerevisiae, Mutat. Res., 51 (1978) 327–346.PubMedCrossRefGoogle Scholar
  26. 26.
    de Langguth, E. N., and C. A. Beam, Repair mechanisms and cell cycle dependent variations in x-ray sensitivity of diploid yeast, Radiat. Res., 53 (1973) 226–234.CrossRefGoogle Scholar
  27. 27.
    de Langguth, E. N., and C. A. Beam, The effects of ploidy upon cell cycle dependent changes in x-ray sensitivity of Saccharomyces cerevisiae, Radiat. Res., 55 (1973) 501–506.CrossRefGoogle Scholar
  28. 28.
    Drake, J. W., and E. F. Allen, Antimutagenic DNA polymerases of bacteriophage T4, Cold Spring Harbor Symp. Quant. Biol., 33 (1968) 339–341.PubMedCrossRefGoogle Scholar
  29. 29.
    Eckardt, F., and R. H. Haynes, Kinetics of mutation induction by ultraviolet light in excision-deficient yeast, Genetics, 85 (1977) 225–247.PubMedGoogle Scholar
  30. 30.
    Eckardt, F., and R. H. Haynes, Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast, Mutat. Res., 43 (1977) 327–338.PubMedCrossRefGoogle Scholar
  31. 31.
    Esposito, M. S., M. Bolotin-Fukuhara, and R. E. Esposito, Antimutator activity during mitosis by a meiotic mutant of yeast, Mol. Gen. Genet., 139 (1975) 9–18.PubMedCrossRefGoogle Scholar
  32. 32.
    Fabre, F., Induced intragenic recombination in yeast can occur during the G1 mitotic phase, Nature, 272 (1978) 795–798.PubMedCrossRefGoogle Scholar
  33. 33.
    Fabre, F., and H. Roman, Genetic evidence for inducibility of recombination competence in yeast, Proc. Natl. Acad. Sci. (U.S.), 74 (1977) 1667–1671.CrossRefGoogle Scholar
  34. 34.
    Finkelstein, D., personal communication.Google Scholar
  35. 35.
    Finkelstein, D. B., and S. Strausberg, Metabolism of α-factor by a mating type cells of Saccharomyces cerevisiae, J. Biol. Chem., 254 (1979) 796–803.PubMedGoogle Scholar
  36. 36.
    Friis, J., and H. Roman, The effect of the mating-type alleles on intragenic recombination in yeast, Genetics, 59 (1968) 33–36.PubMedGoogle Scholar
  37. 37.
    Game, J. C., Radiation-sensitive mutants of yeast, In: Molecular Mechanisms for Repair of DNA, P. C. Hanawalt and R. B. Setlow (Eds.), Plenum Press, New York, 1975, pp. 541–544.Google Scholar
  38. 38.
    Game, J. C., and B. S. Cox, Allelism tests of mutants affecting sensitivity to radiation in yeast and a proposed nomenclature, Mutat. Res., 12 (1971) 328–331.CrossRefGoogle Scholar
  39. 39.
    Game, J. C., and B. S. Cox, Epistatic interactions between four rad loci in yeast, Mutat. Res., 16 (1972) 353–362.PubMedCrossRefGoogle Scholar
  40. 40.
    Game, J. C., and B. S. Cox, Synergistic interactions between RAD mutations in yeast, Mutat. Res., 20 (1973) 35–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Game, J. C., L. H. Johnston, and R. C. von Borstel, Enhanced mitotic recombination in a ligase-defective mutant of the yeast Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. (U.S.), 76 (1979) 4589–4592.CrossRefGoogle Scholar
  42. 42.
    Game, J. C., and R. K. Mortimer, A genetic study of x-ray sensitive mutants in yeast, Mutat. Res., 24 (1974) 281–292.PubMedCrossRefGoogle Scholar
  43. 43.
    Game, J. C., and R. K. Mortimer, personal communication.Google Scholar
  44. 44.
    Game, J. C., T. J. Zamb, R. J. Braun, M. Resnick, and R. M. Roth, The role of radiation (rad) genes in meiotic recombination in yeast, Genetics, in press.Google Scholar
  45. 45.
    Gocke, E., and T. R. Manney, Expression of radiation-induced mutations at the arginine permease (CANl) locus in Saccharomyces cerevisiae, Genetics, 91 (1979) 53–66.PubMedGoogle Scholar
  46. 46.
    Golin, J. E., and M. S. Esposito, Evidence for joint genic control of spontaneous mutation and genetic recombination during mitosis in Saccharomyces, Mol. Gen. Genet., 150 (1977) 127–135.PubMedCrossRefGoogle Scholar
  47. 47.
    Grenson, M., and C. Hou, Ammonia inhibition of the general amino acid permease and its suppression in NADPH-specific glutamate dehydrogenaseless mutants of Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun., 48 (1972) 749–756.PubMedCrossRefGoogle Scholar
  48. 48.
    Grenson, M., C. Hou, and M. Crabeel, Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease, J. Bacteriol., 103 (1970) 770–777.PubMedGoogle Scholar
  49. 49.
    Grenson, M., M. Mousset, J. M. Wiame, and J. Bechet, Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-trans-porting system, Biochim. Biophys. Acta, 127 (1966) 325–338.PubMedCrossRefGoogle Scholar
  50. 50.
    Hannan, M. A., P. Duck, and A. Nasim, UV-induced lethal sectoring and pure mutant clones in yeast, Mutat. Res., 36 (1976) 171–176.PubMedCrossRefGoogle Scholar
  51. 51.
    Hartwell, L. H., Biochemical genetics of yeast, Ann. Rev. Genet., 4 (1970) 373–396.PubMedCrossRefGoogle Scholar
  52. 52.
    Hartwell, L. H., Genetic control of the cell division cycle in yeast. II. Genes controlling DNA replication and its initiation, J. Mol. Biol., 59 (1971) 183–194.PubMedCrossRefGoogle Scholar
  53. 53.
    Hartwell, L. H., Three additional genes required for DNA synthesis in Saccharomyces cerevisiae, J. Bacteriol., 115 (1973) 966–974.PubMedGoogle Scholar
  54. 54.
    Hartwell, L. H., Saccharomyces cerevisiae cell cycle, Bacteriol. Rev., 38 (1974) 164–198.PubMedGoogle Scholar
  55. 55.
    Hastings, P. J., S.-K. Quah, and R. C. von Borstel, Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA, Nature, 264 (1976) 719–722.PubMedCrossRefGoogle Scholar
  56. 56.
    Haynes, R. H., DNA repair and the genetic control of radio-sensitivity in yeast, In: Molecular Mechanisms for Repair of DNA, P. C. Hanawalt and R. B. Setlow (Eds.), Plenum Press, New York, 1975, pp. 529–540.Google Scholar
  57. 57.
    Hereford, L. M., and L. H. Hartwell, Role of protein synthesis in the replication of yeast DNA, Nature New Biol., 244 (1973) 129–131.PubMedCrossRefGoogle Scholar
  58. 58.
    Hershfield, M. S., and N. G. Nossal, In vitro characterization of a mutator T4 DNA polymerase, Genetics (Suppl.), 73 (1973) 131–136.Google Scholar
  59. 59.
    Hill, R. F., Ultraviolet-induced lethality and reversion to prototrophy in Escherichia coli strains with normal and reduced repair ability, Photochem. Photobiol., 4 (1965) 563–568.PubMedCrossRefGoogle Scholar
  60. 60.
    Ho, K., Induction of DNA double-strand breaks by X-rays in a radiosensitive strain of the yeast Saccharomyces cerevisiae, Mutat. Res., 30 (1975) 327–334.PubMedCrossRefGoogle Scholar
  61. 61.
    Ho, K. S. Y., and R. K. Mortimer, Induction of dominant lethality by X-rays in a radiosensitive strain of yeast, Mutat. Res., 20 (1973) 45–51.PubMedCrossRefGoogle Scholar
  62. 62.
    Holliday, R., A mechanism for gene conversion in fungi, Genet. Res., 5 (1964) 282–304.CrossRefGoogle Scholar
  63. 63.
    Holliday, R., Radiation-sensitive mutants of Ustilago maydis, Mutat. Res., 2 (1965) 557–559.PubMedCrossRefGoogle Scholar
  64. 64.
    Holliday, R., Altered recombination frequencies in radiationsensitive strains of Ustilago, Mutat. Res., 4 (1967) 275–288.PubMedCrossRefGoogle Scholar
  65. 65.
    Holliday, R., Biochemical measure of the time and frequency of radiation-induced allelic recombination in Ustilago, Nature New Biol., 232 (1971) 233–236.PubMedGoogle Scholar
  66. 66.
    Holliday, R., Ustilago maydis, In: Handbook of Genetics, R. C. King (Ed.), Vol. 1, Plenum Press, New York, 1974, pp. 575–595.Google Scholar
  67. 67.
    Holliday, R., R. E. Halliwell, M. W. Evans, and V. Rowell, Genetic characterization of rec-1, a mutant of Ustilago maydis defective in repair and recombination, Genet. Res., 27 (1976) 413–453.PubMedCrossRefGoogle Scholar
  68. 68.
    Howard-Flanders, P., DNA repair, Ann. Rev. Biochem., 37 (1968) 175–200.PubMedCrossRefGoogle Scholar
  69. 69.
    Howard-Flanders, P., L. Theriot, and J. B. Stedeford, Some properties of excision-defective, recombination-defective mutants of Escherichia coli K12, J. Bacteriol., 97 (1969) 1134–1141.PubMedGoogle Scholar
  70. 70.
    James, A. P., and B. J. Kilbey, The timing of UV mutagenesis in yeast: A pedigree analysis of induced recessive mutation, Genetics, 87 (1977) 237–248.PubMedGoogle Scholar
  71. 71.
    James, A. P., B. J. Kilbey, and G. J. Prefontaine, The timing of UV mutagenesis in yeast: Continuing mutation in an excision-defective (rad-1) strain, Mol. Gen. Genet., 165 (1978) 207–212.PubMedCrossRefGoogle Scholar
  72. 72.
    Johnston, L. H., and J. C. Game, Mutants of yeast with depressed DNA synthesis, Mol. Gen. Genet., 161 (1978) 205–214.PubMedGoogle Scholar
  73. 73.
    Johnston, L. H., and K. A. Nasmyth, Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase, Nature 274 (1978) 891–893.PubMedCrossRefGoogle Scholar
  74. 74.
    Kato, T., and Y. Shinoura, Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light, Mol. Gen. Genet., 156 (1977) 121–131.PubMedGoogle Scholar
  75. 75.
    Kilbey, B. J., T. Brychcy, and A. Nasim, Initiation of UV mutagenesis in Saccharomyces cerevisiae, Nature, 274 (1978) 889–891.CrossRefGoogle Scholar
  76. 76.
    Kilbey, B. J., and A. P. James, The mutagenic potential of unexcised pyrimidine dimers in Saccharomyces cerevisiae RAD1-1. Evidence from photoreactivation and pedigree analysis, Mutat. Res., 60 (1979) 163–171.PubMedCrossRefGoogle Scholar
  77. 77.
    Kimball, R. F., The mutagenicity of hydrazine and some of its derivatives, Mutat. Res., 39 (1977) 111–126.PubMedGoogle Scholar
  78. 78.
    Kimball, R. F., The relation of repair phenomena to mutation induction in bacteria, Mutat. Res., 55 (1978) 85–120.PubMedGoogle Scholar
  79. 79.
    Kimball, R. F., and B. F. Hirsch, Tests for the mutagenic action of a number of chemicals on Haemophilus influenzae with special emphasis on hydrazine, Mutat. Res., 30 (1975) 9–20.PubMedCrossRefGoogle Scholar
  80. 80.
    Kimball, R. F., and B. F. Hirsch, Fixation and loss of hydrazine-induced premutational damage in Haemophilus influenzae, Mutat. Res., 36 (1976) 39–48.PubMedCrossRefGoogle Scholar
  81. 81.
    Korch, C. T., and R. Snow, Allelic complementation in the first gene for histidine biosynthesis in Saccharomyces cerevisiae. I. Characteristics of mutants and genetic mapping of alleles, Genetics, 74 (1973) 287–305.PubMedGoogle Scholar
  82. 82.
    Kowalski, S., and W. Laskowski, The effect of three rad genes on survival, inter-and intragenic mitotic recombination in Saccharomyces, Mol. Gen. Genet., 136 (1975) 75–86.PubMedCrossRefGoogle Scholar
  83. 83.
    Larimer, F. W., personal communication.Google Scholar
  84. 84.
    Larimer, F. W., D. Ramey, W. Lijinsky, and J. L. Epler, Mutagenicity of methylated N-nitrosopiperidines in Saccharomyces cerevisiae, Mutat. Res., 57 (1978) 155–161.PubMedCrossRefGoogle Scholar
  85. 85.
    Laskowski, W., Inaktivierungsversuche mit homozyoten Hefestämmen verschiedenen Ploidilgrades, Z. Naturforsch., 15b (1960) 495–506.Google Scholar
  86. 86.
    Laskowski, W., Der aα-Effect, eine Korrelation zwischen Paarungstypenkonstitution und Strahlenresistenz bei Hefen, Zentralbl. Batkeriol. Parasitenkd, Infektionskr. Hyg. Abt. I Orig., 184 (1962) 251–258.Google Scholar
  87. 87.
    Lawrence, C. W., and R. Christensen, UV mutagenesis in radiation-sensitive strains of yeast, Genetics, 82 (1976) 207–232.PubMedGoogle Scholar
  88. 88.
    Lawrence, C. W., and R. Christensen, Ultraviolet-induced reversion of cycl alleles in radiation-sensitive strains of yeast. I. revl mutant strains, J. Mol. Biol., 122 (1978) 1–21.PubMedCrossRefGoogle Scholar
  89. 89.
    Lawrence, C. W., and R. Christensen, Ultraviolet-induced reversion of cycl alleles in radiation-sensitive strains of yeast. II. rev2 mutant strains, Genetics, 90 (1978) 213–226.PubMedGoogle Scholar
  90. 90.
    Lawrence, C. W., and R. Christensen, Ultraviolet light induced mutagenesis in Saccharomyces cerevisiae, In: DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, and C. F. Fox (Eds.), Academic Press, New York, 1978, pp. 437–440.Google Scholar
  91. 91.
    Lawrence, C. W., and R. Christensen, Ultraviolet-induced reversion of cycl alleles in radiation-sensitive strains of yeast. III. rev3 mutant strains, Genetics, 92 (1979) 397–408.PubMedGoogle Scholar
  92. 92.
    Lawrence, C. W., J. W. Stewart, F. Sherman, and R. Christensen, Specificity and frequency of ultraviolet-induced reversion of an iso-1-cytochrome c ochre mutant in radiation-sensitive strains of yeast, J. Mol. Biol., 85 (1974) 137–162.PubMedCrossRefGoogle Scholar
  93. 93.
    Lemontt, J. F., Mutants of yeast defective in mutation induced by ultraviolet light, Genetics, 68 (1971) 21–33.PubMedGoogle Scholar
  94. 94.
    Lemontt, J. F., Pathways of ultraviolet mutability in Saccharomyces cerevisiae. II. The effect of rev genes on recombination, Mutat. Res., 13 (1971) 319–326.PubMedCrossRefGoogle Scholar
  95. 95.
    Lemontt, J. F., Induction of forward mutations in mutationally defective yeast, Mol. Gen. Genet., 119 (1972) 27–42.PubMedCrossRefGoogle Scholar
  96. 96.
    Lemontt, J. F., Genes controlling ultraviolet mutability in yeast, Genetics (Suppl.), 73 (1973) 153–159.Google Scholar
  97. 97.
    Lemontt, J. F., Induced mutagenesis in Ustilago maydis. I. Isolation and characterization of a radiation-revertible allele of the structural gene for nitrate reductase, Mol. Gen. Genet., 145 (1976) 125–132.PubMedGoogle Scholar
  98. 98.
    Lemontt, J. F., Induced mutagenesis in Ustilago maydis. II. An in vivo biochemical assay, Mol. Gen. Genet., 145 (1976) 133–143.PubMedGoogle Scholar
  99. 99.
    Lemontt, J. F., Mutagenesis of yeast by hydrazine: Dependence upon post-treatment cell division, Mutat. Res., 43 (1977) 165–178.PubMedCrossRefGoogle Scholar
  100. 100.
    Lemontt, J. F., Pathways of ultraviolet mutability in Saccharomyces cerevisiae. III. Genetic analysis and properties of mutants resistant to ultraviolet-induced forward mutation, Mutat. Res., 43 (1977) 179–204.PubMedCrossRefGoogle Scholar
  101. 101.
    Lemontt, J. F., Pathways of ultraviolet mutability in Saccharomyces cerevisiae. IV. The relation between canavanine toxicity and ultraviolet mutability to canavanine resistance, Mutat. Res., 43 (1977) 339–355.PubMedCrossRefGoogle Scholar
  102. 102.
    Lemontt, J. F., Loss of hydrazine-induced mutability in wild-type and excision-repair-defective yeast during post-treatment inhibition of cell division, Mutat. Res., 50 (1978) 57–66.PubMedCrossRefGoogle Scholar
  103. 103.
    Lemontt, J. F., unpublished data.Google Scholar
  104. 104.
    Lemontt, J. F., D. R. Fugit and V. L. MacKay, Pleiotropic mutations at the TUP1 locus that affect the expression of mating-type-dependent functions in Saccharomyces cerevisiae, Genetics, in press.Google Scholar
  105. 105.
    Lemontt, J. F., and V. L. MacKay, A pleiotropic mutant of yeast expressing the mating-specific “shmoo” morphology during vegetative growth in the absence of exogenous mating hormone (abs.), Genetics (Suppl.), 86 (1977) s38.Google Scholar
  106. 106.
    Livi, G. P., and V. L. MacKay, Mating-type regulation of methyl methanesulfonate sensitivity in Saccharomyces cerevisiae, Genetics, in press.Google Scholar
  107. 107.
    MacKay, V. L., Mating-type-specific pheromones as mediators of sexual conjugation in yeast, In: Molecular Control of Proliferation and Differentiation, J. Papaconstantinou and W. J. Rutter (Eds.), Academic Press, New York, 1978, pp. 243–259.Google Scholar
  108. 108.
    Maloney, D., and S. Fogel, High frequency mitotic conversion mutants in yeast (abs.), Genetics (Suppl.), 83 (1976) s47.Google Scholar
  109. 109.
    Manney, T. R., and J. H. Meade, Cell-cell interactions during mating in Saccharomyces cerevisiae, In: Microbial Interactions, Receptors and Recognition, Ser. B, Vol. 3, J. L. Reissig (Ed.), Chapman and Hall, London, 1977, pp. 281–321.Google Scholar
  110. 110.
    Manney, T. R., and R. K. Mortimer, Allelic mapping in yeast by x-ray-induced mitotic reversion, Science, 143 (1964) 581–582.PubMedCrossRefGoogle Scholar
  111. 111.
    Martin, P., S. Prakash, and L. Prakash, personal communication.Google Scholar
  112. 112.
    McKee, R. H., and C. W. Lawrence, Genetic analysis of gamma ray mutagenesis in yeast. I. Reversion in radiation-sensitive strains, Genetics, in press.Google Scholar
  113. 113.
    McKee, R. H., and C. W. Lawrence, Genetic analysis of gamma ray mutagenesis in yeast. Survival and reversion in double mutant strains, Mutat. Res., submitted.Google Scholar
  114. 114.
    McKee, R. H., and C. W. Lawrence, Genetic analysis of gamma ray mutagenesis in yeast. II. Allele-specific control of mutagenesis, Genetics, in press.Google Scholar
  115. 115.
    Moore, C., and F. Sherman, Role of DNA sequences in genetic recombination in the iso-1-cytochrome c gene of yeast. I. Discrepancies between physical distance and genetic distance determined by five mapping procedures, Genetics, 79 (1975) 397–418.PubMedGoogle Scholar
  116. 116.
    Moore, C., and F. Sherman, Role of DNA sequences in genetic recombination in the iso-1-cytochrome c gene of yeast. II. Comparison of mutants altered at the same and nearby base pairs, Genetics, 85 (1977) 1–22.PubMedGoogle Scholar
  117. 117.
    Mortimer, R. K., Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae, Radiat. Res., 9 (1958) 312–326.PubMedCrossRefGoogle Scholar
  118. 118.
    Mortimer, R. K., and D. C. Hawthorne, Yeast genetics, In: The Yeasts, Vol. 1, A. H. Rose and J. S. Harrison (Eds.), Academic Press, New York, 1969, pp. 385–460.Google Scholar
  119. 119.
    Mount, D. W., K. B. Low, and S. J. Edmiston, Dominant mutants (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet light-induced mutations, J. Bacteriol., 112 (1972) 886–893.PubMedGoogle Scholar
  120. 120.
    Moustacchi, E., Cytoplasmic and nuclear genetic events induced by UV light in strains of Saccharomyces cerevisiae with different UV sensitivities, Mutat. Res., 7 (1969) 171–185.PubMedCrossRefGoogle Scholar
  121. 121.
    Moustacchi, E., R. Chanet, and M. Heude, Ionizing and ultraviolet radiations: Genetic effects and repair in yeast, In: Research in Photobiology, A. Castellani (Ed.), Plenum Press, New York, 1976, pp. 197–206.Google Scholar
  122. 122.
    Nakai, S., and S. Matsumoto, Two types of radiation-sensitive mutant in yeast, Mutat. Res., 4 (1967) 129–136.PubMedCrossRefGoogle Scholar
  123. 123.
    Nakai, S., and R. K. Mortimer, Studies of the genetic mechanism of radiation-induced mitotic segregation in yeast, Mol. Gen. Genet., 103 (1969) 329–338.PubMedCrossRefGoogle Scholar
  124. 124.
    Parker, J. H., and F. Sherman, Fine-structure mapping and mutational studies of gene controlling yeast cytochrome c, Genetics, 62 (1969) 9–22.PubMedGoogle Scholar
  125. 125.
    Parry, E. M., and B. S. Cox, The tolerance of aneuploidy in yeast, Genet. Res., 16 (1970) 333–340.PubMedCrossRefGoogle Scholar
  126. 126.
    Parry, J. M., P. J. Davies, and W. E. Evans, The effects of “cell age” upon the lethal effects of physical and chemical mutagens in the yeast, Saccharomyces cerevisiae, Mol. Gen. Genet., 146 (1976) 27–35.PubMedCrossRefGoogle Scholar
  127. 127.
    Parry, J. M., and E. M. Parry, The effects of UV light posttreatments on the survival characteristics of 21 UV-sensitive mutants of Saccharomyces cerevisiae, Mutat. Res., 8 (1969) 545–556.PubMedCrossRefGoogle Scholar
  128. 128.
    Patrick, M. H., and R. H. Haynes, Dark recovery phenomena in yeast. II. Conditions that modify the recovery process, Radiat. Res., 23 (1964) 564–579.PubMedCrossRefGoogle Scholar
  129. 129.
    Patrick, M. H., R. H. Haynes, and R. B. Uretz, Dark recovery phenomena in yeast. I. Comparative effects with various inactivating agents, Radiat. Res., 21 (1964) 144–163.PubMedCrossRefGoogle Scholar
  130. 130.
    Prakash, L., Lack of chemically induced mutation in repair-deficient mutants of yeast, Genetics, 78 (1974) 1101–1118.PubMedGoogle Scholar
  131. 131.
    Prakash, L., Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light, J. Mol. Biol., 98 (1975) 781–795.PubMedCrossRefGoogle Scholar
  132. 132.
    Prakash, L., Effect of genes controlling radiation sensitivity on chemically induced mutations in Saccharomyces cerevisiae, Genetics 83 (1976) 285–301.PubMedGoogle Scholar
  133. 133.
    Prakash, L., The relation between repair of DNA and radiation and chemical mutagenesis in Saccharomyces cerevisiae, Mutat. Res., 41 (1976) 241–248.PubMedCrossRefGoogle Scholar
  134. 134.
    Prakash, L., Defective thymine dimer excision in radiation-sensitive mutants rad10 and radl6 of Saccharomyces cerevisiae, Mol. Gen. Genet., 152 (1977) 125–128.PubMedCrossRefGoogle Scholar
  135. 135.
    Prakash, L., Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6, and rad9 of Saccharomyces cerevisiae, Mutat. Res., 45 (1977) 13–20.PubMedCrossRefGoogle Scholar
  136. 136.
    Prakash, L., D. Hinkle, and S. Prakash, Decreased UV mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae, Mol. Gen. Genet., 172 (1979) 249–258.PubMedCrossRefGoogle Scholar
  137. 137.
    Prakash, L., and S. Prakash, Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae, Genetics, 86 (1977) 33–55.PubMedGoogle Scholar
  138. 138.
    Prakash, S., and L. Prakash, Increased spontaneous mitotic segregation in MMS-sensitive mutants of Saccharomyces cerevisiae, Genetics, 87 (1977) 229–236.PubMedGoogle Scholar
  139. 139.
    Quah, S.-K., personal communication.Google Scholar
  140. 140.
    Quah, S.-K., R. C. von Borstel, and P. J. Hastings, Antimutators in yeast (abs.), Cold Spring Harbor Laboratory Meeting on the Molecular Biology of Yeast, 1977, p. 82.Google Scholar
  141. 141.
    Rahn, R. O., N. P. Johnson, A, W. Hsie, J. F. Lemontt, W. E. Masker, J. D. Regan, W. C. Dunn, J. D. Hoeschele and D. H. Brown, The interaction of platinum compounds with the genome: Correlation between DNA binding and biological effects, In: The Scientific Basis of Toxicity Assessment, H. R. Witschi (Ed.), Elsevier/North Holland, Amsterdam, in press.Google Scholar
  142. 142.
    Resnick, M. A., Genetic control of radiation sensitivity in Saccharomyces cerevisiae, Genetics 62 (1969) 519–531.PubMedGoogle Scholar
  143. 143.
    Resnick, M. A., Induction of mutations in Saccharomyces cerevisiae by ultraviolet light, Mutat. Res., 7 (1969) 315–332.PubMedCrossRefGoogle Scholar
  144. 144.
    Resnick, M. A., The induction of molecular and genetic recombination in eukaryotic cells, Adv. Radiat. Biol., 8 (1978) 175–216.Google Scholar
  145. 145.
    Resnick, M. A., and P. Martin, The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control, Mol. Gen. Genet., 143 (1976) 119–129.PubMedCrossRefGoogle Scholar
  146. 146.
    Resnick, M. A., and J. K. Setlow, Repair of pyrimidine dimer damage induced in yeast by ultraviolet light, J. Bacteriol., 109 (1972) 979–986.PubMedGoogle Scholar
  147. 147.
    Reynolds, R. J., Removal of pyrimidine dimers from Saccharomyces cerevisiae nuclear DNA under nongrowth conditions as detected by a sensitive, enzymatic assay, Mutat. Res., 50 (1978) 43–56.PubMedCrossRefGoogle Scholar
  148. 148.
    Rodarte-Ramon, U.S., Radiation-induced recombination in Saccharomyces: The genetic control of recombination in mitosis and meiosis, Radiat. Res., 49 (1972) 148–154.PubMedCrossRefGoogle Scholar
  149. 149.
    Rodarte-Ramon, U. S., and R. K. Mortimer, Radiation-induced recombination in Saccharomyces: Isolation and genetic study of recombination-deficient mutants, Radiat. Res., 49 (1972) 133–147.PubMedCrossRefGoogle Scholar
  150. 150.
    Roman, H., A system selective for mutations affecting the synthesis of adenine in yeast, C. R. Trav. Lab. Carlsberg, 26 (1956) 299–314.Google Scholar
  151. 151.
    Rose, A. H., and J. S. Harrison (Eds.), The Yeasts, Vol. 1, Biology of Yeasts, Academic Press, New York, 1969.Google Scholar
  152. 152.
    Rose, A. H., and J. S. Harrison (Eds.), The Yeasts, Vol. 2, Physiology and Biochemistry of Yeasts, Academic Press, New York, 1971.Google Scholar
  153. 153.
    Rothstein, R. J., and F. Sherman, Genes affecting the expression of cytochrome c in yeast: Genetic mapping and genetic interactions, Genetics, in press.Google Scholar
  154. 154.
    Rupp, W. D., and P. Howard-Flanders, Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. Mol. Biol., 131 (1968) 291–304.CrossRefGoogle Scholar
  155. 155.
    Schnaar, R. L., N. Muzyczka, and M. J. Bessman, Utilization of aminopurine deoxynucleoside triphosphate by mutator, antimutator and wild-type DNA polymerases of bacteriophage T4, Genetics (Suppl.), 73 (1973) 137–140.Google Scholar
  156. 156.
    Sherman, F., and C. W. Lawrence, Saccharomyces, In: Handbook of Genetics, Vol. 1, R. C. King (Ed.), Plenum Press, New York, 1974, pp. 359–393.Google Scholar
  157. 157.
    Sherman, F., and J. W. Stewart, Variation of mutagenic action on nonsense mutants at different sites in the iso-1-cytochrome c gene of yeast, Genetics, 78 (1974) 97–113.PubMedGoogle Scholar
  158. 158.
    Smith, K. C., and D. H. C. Meun, Repair of radiation-induced damage in Escherichia coli. I. Effect of rec mutations on postreplication repair of damage due to ultraviolet radiation, J. Mol. Biol., 51 (1970) 459–472.PubMedCrossRefGoogle Scholar
  159. 159.
    Snow, R., Mutants of yeast sensitive to ultraviolet light, J. Bacteriol., 94 (1967) 571–575.PubMedGoogle Scholar
  160. 160.
    Snow, R., Recombination in ultraviolet-sensitive strains of Saccharomyces cerevisiae, Mutat. Res., 6 (1968) 409–418.PubMedCrossRefGoogle Scholar
  161. 161.
    Speyer, J. F., Mutagenic DNA polymerase, Biochem. Biophys. Res. Commun., 21 (1965) 6–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Suslova, N. G., and I. A. Zakharov, The gene-controlled radiation sensitivity of yeast. VII. Identification of the genes for the x-ray sensitivity, Genetika, 6 (1970) 158–163.Google Scholar
  163. 163.
    Terisima, T., and L. J. Tolmach, Change in x-ray sensitivities of HeLa cells during the division cycle, Nature, 190 (1961) 1210–1211.CrossRefGoogle Scholar
  164. 164.
    Unrau, P., R. Wheatcroft, and B. S. Cox, The excision of pyrimidine dimers from DNA of ultraviolet irradiated yeast, Mol. Gen. Genet., 113 (1971) 359–362.PubMedCrossRefGoogle Scholar
  165. 165.
    von Borstel, R. C., K. T. Cain, and C. M. Steinberg, Inheritance of spontaneous mutability in yeast, Genetics, 69 (1971) 17–27.Google Scholar
  166. 166.
    von Borstel, R. C., and P. J. Hastings, Mutagenic repair pathways in yeast, In: Research in Photobiology, A. Castellani (Ed.), Plenum Press, New York, 1976, pp. 683–687.Google Scholar
  167. 167.
    von Borstel, R. C., S.-K. Quah, C. M. Steinberg, F. Flury, and D. J. C. Gottlieb, Mutants of yeast with enhanced spontaneous mutation rates, Genetics (Suppl.), 73 (1973) 141–151.Google Scholar
  168. 168.
    Waters, R., and E. Moustacchi, The disappearance of ultraviolet induced pyrimidine dimers from the nuclear DNA of exponential and stationary phase cells of Saccharomyces cerevisiae following various post-irradiation treatments, Biochim. Biophys. Acta, 353 (1974) 407–419.PubMedGoogle Scholar
  169. 169.
    Waters, R., and E. Moustacchi, The fate of ultraviolet-induced pyrimidine dimers in the mitochondrial DNA of Saccharomyces cerevisiae following various post-irradiation cell treatments, Biochim. Biophys. Acta, 366 (1974) 241–250.PubMedGoogle Scholar
  170. 170.
    Whelan, W. L., E. Gocke, and T. R. Manney, The CAN1 locus of Saccharomyces cerevisiae: Fine-structure analysis and forward mutation rates, Genetics, 91 (1970) 35–51.Google Scholar
  171. 171.
    Wickner, R. B., Mutants of Saccharomyces cerevisiae that incorporate deoxythymidine-5′-monophosphate into deoxyribonucleic acid in vivo, J. Bacteriol., 117 (1974) 252–260.PubMedGoogle Scholar
  172. 172.
    Wildenberg, J., The relation of mitotic recombination to DNA replication in yeast pedigrees, Genetics, 66 (1970) 291–304.PubMedGoogle Scholar
  173. 173.
    Williamson, D. H., Replication of the nuclear genome does not require concomitant protein synthesis in yeast, Biochem. Biophys. Res. Commun., 52 (1973) 731–740.PubMedCrossRefGoogle Scholar
  174. 174.
    Witkin, E. M., Radiation-induced mutations and their repair, Science, 152 (1966) 1345–1353.PubMedCrossRefGoogle Scholar
  175. 175.
    Witkin, E. M., Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet light, Brookhaven Symp. Biol., 20 (1967) 17–55.Google Scholar
  176. 176.
    Witkin, E. M., The role of DNA repair and recombination in mutagenesis, Proc. XII Int. Congr. Genet., 3 (1969) 225–245.Google Scholar
  177. 177.
    Witkin, E. M., Ultraviolet-induced mutation and DNA repair, Ann. Rev. Genet., 3 (1969) 525–552.CrossRefGoogle Scholar
  178. 178.
    Witkin, E. M., Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev., 40 (1976) 869–907.PubMedGoogle Scholar
  179. 179.
    Zakharov, I. A., T. N. Kozina, and I. V. Fedorova, Effets des mutations vers la sensibilité au rayonnement ultraviolet chez la levure, Mutat. Res., 9 (1970) 31–39.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Jeffrey F. Lemontt
    • 1
  1. 1.Biology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations