Ultraviolet Light Induction of Diphtheria Toxin-Resistant Mutations in Normal and DNA Repair-Deficient Human and Chinese Hamster Fibroblasts

  • James E. Trosko
  • Roger S. Schultz
  • C. C. Chang
  • Tom Glover
Part of the Basic Life Sciences book series (BLSC, volume 15)


The role of unrepaired DNA lesions in the production of mutations is suspected of contributing to the initiation phase of carcinogenesis. Since the molecular basis of mutagenesis is not understood in eukaryotic cells, development of new genetic markers for quantitative in vitro measurement of mutations for mammalian cells is needed. Furthermore, mammalian cells, genetically deficient for various DNA repair enzymes, will be needed to study the role of unrepaired DNA lesions in mutagenesis. The results in this report relate to preliminary attempts (1) to characterize the diphtheria toxin resistance marker as a useful quantitative genetic marker in human cells and (2) to isolate and characterize various DNA repair-deficient Chinese hamster cells.


Excision Repair Diphtheria Toxin Chemical Carcinogen Xeroderma Pigmentosum Chinese Hamster Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R. E., R. J. Burns, L. Bilger, D. Gardner, and W. Troll, Cell loss and proliferation induced by N-2-fluoreny-lacetemide in the rat liver in relation to hepatoma induction, Cancer Res., 32 (1972) 2172–2177.PubMedGoogle Scholar
  2. 2.
    Ames, B. N., W. E. Durston, E. Yamasaki, and F. D. Lee, Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection, Proc. Natl. Acad. Sci. (U.S.), 70 (1973) 2281–2285.CrossRefGoogle Scholar
  3. 3.
    Andrews, A. D., S. F. Barrett, and J. H. Robbins, Xeroderma pigmentosum neurological abnormalities correlate with colony-forming ability after ultraviolet radiation, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 1984–1988.CrossRefGoogle Scholar
  4. 4.
    Barrett, C. J., T. Tsutsui, and P. O. P. Ts’o, Neoplastic transformation induced by a direct perturbation of DNA, Nature, 274 (1978) 229–232.PubMedCrossRefGoogle Scholar
  5. 5.
    Benditt, E. P., The origin of atherosclerosis, Sci. American, 236 (1977) 74–85.CrossRefGoogle Scholar
  6. 6.
    Berman, J. J., C. Tong, and G. M. Williams, Enhancement of mutagenesis during cell replication of cultured liver epithelial cells, Cancer Letters, 4 (1978) 277–283.PubMedCrossRefGoogle Scholar
  7. 7.
    Bertram, J. S., A. P. Peterson, and C. Heidelberger, Chemical oncogenesis in cultured mouse embryo cells in relation to the cell cycle, In Vitro, 11 (1975) 97–106.PubMedCrossRefGoogle Scholar
  8. 8.
    Berwald, Y., and L. Sachs, Transformation of normal cells to tumor cells by carcinogenic hydrocarbons, J. Natl. Cancer Inst., 35 (1965) 641–661.PubMedGoogle Scholar
  9. 9.
    Bouck, N., and G. diMayorca, Somatic mutations as the basis for malignant transformation of BHK cells by chemical carcinogens, Nature, 264 (1976) 722–725.PubMedCrossRefGoogle Scholar
  10. 10.
    Boyce, R., and P. Howard-Flanders, Release of ultraviolet-induced thymine dimers from DNA in E. coli K-12, Proc. Natl. Acad. Sci. (U.S.), 51 (1964) 293–300.CrossRefGoogle Scholar
  11. 11.
    Bridges, B. A., The involvement of E. coli DNA polymerase III in constitutive and inducible mutagenic repair, In: DNA Repair Mechanisms, P. Hanawalt, E. C. Friedberg, and C. F. Fox, Eds., Academic Press, New York, 1978, pp. 345–348.Google Scholar
  12. 12.
    Cayama, E., H. Tsuda, D. S. R. Sarma, and E. Farber, Initiation of chemical carcinogenesis requires cell proliferation, Nature, 275 (1978) 60–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Chang, C. C., S. M. D’Ambrosio, R. Schultz, J. E. Trosko, and R. B. Setlow, Modification of UV-induced mutation frequencies in Chinese hamster cells by dose fractionation, cycloheximide and caffeine treatments, Mutat. Res., 52 (1978) 231–245.PubMedCrossRefGoogle Scholar
  14. 14.
    Chang, C. C., and J. E. Trosko, Induction and characterization of diphtheria toxin resistance Chinese hamster cells, in preparation.Google Scholar
  15. 15.
    Chang, C. C., J. E. Trosko, and T. Akera, Characterization of ultraviolet light-induced ouabain-resistant mutations in Chinese hamster cells, Mutat. Res., 51 (1978) 85–98.PubMedCrossRefGoogle Scholar
  16. 16.
    Chang, C. C., J. E. Trosko, and T. W. Glover, Characterization of radiation-induced diphtheria toxin-resistant mutations in Chinese hamster V79 cells, Paper presented at 10th Annual Environmental Mutagen Society, (Abstract), March 8–12, 1979, New Orleans.Google Scholar
  17. 17.
    Chang, C. C., J. E. Trosko, and S. T. Warren, In vitro assay for tumor promoters and anti-promoters, J. Environ. Pathol. Toxicol., 2 (1978) 43–64.PubMedGoogle Scholar
  18. 18.
    Chen, T.T., and C. Heidelberger, Quantitative studies on malignant transformation of mouse prostate cells by carcinogenic hydrocarbons in vitro, Intern. J. Cancer, 4 (1969) 166–178.CrossRefGoogle Scholar
  19. 19.
    Chu, E. H. Y., and S. S. Powell, Selective systems in somatic cell genetics, In: Advances in Human Genetics, Vol. 7, H. Harris and K. Kirschhorn, Eds., Plenum Press, New York, 1976, pp. 189–258.Google Scholar
  20. 20.
    Cleaver, J. E., A human disease in which on initial stage of DNA repair is defective, Proc. Natl. Acad. Sci. (U.S.), 63 (1969) 428–435.CrossRefGoogle Scholar
  21. 21.
    Cleaver, J. E., Absence of interaction between x-rays and UV light in inducing ouabain-and thioguanine-resistant mutants in Chinese hamster cells, Mutat. Res., 52 (1978) 247–253.PubMedCrossRefGoogle Scholar
  22. 22.
    Cleaver, J. E., and J. E. Trosko, Absence of excision of ultraviolet-induced cyclobutane dimers in xeroderma pigmentosum, Photochem. Photobiol., 11 (1970) 547–550.PubMedCrossRefGoogle Scholar
  23. 23.
    Craddock, V. M., Liver carcinomas induced in rats by single administration of dimethylnitrosamine after partial hepatectomy, J. Natl. Cancer Inst., 47 (1971) 889–905.Google Scholar
  24. 24.
    Craddock, V. M., and J. V. Frei, Induction of liver cell adenomata in the rat by a single treatment with N-methyl-N-nitrosourea given at various times after partial hepatectomy, Brit. J. Cancer, 30 (1974) 503–511.PubMedCrossRefGoogle Scholar
  25. 25.
    Craddock, V. M., and J. V. Frei, Induction of tumors in intact and partially hepatectomized rats with ethyl methane sulphonate, Brit. J. Cancer, 34 (1976) 207–209.PubMedCrossRefGoogle Scholar
  26. 26.
    D’Ambrosio, S. M., and R. B. Setlow, Enhancement of post-replication repair in Chinese hamster cells, Proc. Natl. Acad. Sci. (U.S.), 73 (1976) 2396–2400.CrossRefGoogle Scholar
  27. 27.
    DasGupta, U. B., and W. C. Summers, Ultraviolet-reactivation of herpes simplex virus is mutagenic and inducible in mammalian cells, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 2378–2381.CrossRefGoogle Scholar
  28. 28.
    Glover, T. W., C. C. Chang, J. E. Trosko, and S. S. Li, Ultraviolet light-induction of diphtheria toxin resistant-mutations in normal and xeroderma pigmentosum human fibroblasts, Proc. Natl. Acad. Sci. (U.S.), 76 (1979) 3982–3986.CrossRefGoogle Scholar
  29. 29.
    Gupta, R. S., and L. Siminovitch, Diphtheria toxin-resistant mutants of CHO cells affected in protein synthesis: a novel phenotype, Somat. Cell Genet., 4 (1978) 553–571.PubMedCrossRefGoogle Scholar
  30. 30.
    Gupta, R. S., and L. Siminovitch, Isolation and characterization of mutants of human diploid fibroblasts resistant to diphtheria toxin, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 3337–3340.CrossRefGoogle Scholar
  31. 31.
    Hanawalt, P. C., P. K. Cooper, A. K. Ganesan, and C. A. Smith, DNA repair in bacteria and mammalian cells, Ann. Rev. Biochem., 48 (1979) 783–836.PubMedCrossRefGoogle Scholar
  32. 32.
    Hanawalt, P., Repair models and mechanisms: overview, In: Molecular Mechanisms for Repair of DNA, Part B, P. Hanawalt and R. B. Setlow, Eds., Plenum Press, New York, 1975, pp. 421–430.CrossRefGoogle Scholar
  33. 33.
    Hart, R. W., and R. B. Setlow, DNA repair and life-span of mammals, In: Molecular Mechanisms for the Repair of DNA, P. C. Hanawalt and R. B. Setlow, Eds., Plenum Press, New York, 1975, pp. 719–724.Google Scholar
  34. 34.
    Hayflict, L., Current theories of biological aging, Fed. Proc, 34 (1975) 9–13.Google Scholar
  35. 35.
    Haynes, R. H., DNA repair and the genetic control of radio-sensitivity in yeast, In: Molecular Mechanisms for Repair of DNA, Vol. 5B, P. C. Hanawalt, and R. B. Setlow, Eds., Plenum Press, New York, 1975, pp. 529–540.Google Scholar
  36. 36.
    Huberman, E., R. Mager, and L. Sachs, Mutagenesis and transformation of normal cells by chemical carcinogens, Nature, 264 (1976) 360–361.PubMedCrossRefGoogle Scholar
  37. 37.
    Iglewski, B. H., and D. Kabat, NAD-dependent inhibition of protein synthesis by Pseudomonas aeurginosa toxin, Proc. Natl. Acad. Sci. (U.S.), 72 (1975) 2284–2288.CrossRefGoogle Scholar
  38. 38.
    Iglewski, B. H., P. V. Liu, and D. Kabat, Mechanism of action of Pseudomonas aeurginosa exotoxin A: adenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo, Infect. Immunol., 15 (1977) 138–144.Google Scholar
  39. 39.
    Isomura, K., M. Nikaido, M. Houkaiwa, and T. Suguhara, Repair of DNA damage in ultraviolet-sensitive cells isolated from HeLa S3 cells, Radiat. Res., 53 (1973) 143–152.PubMedCrossRefGoogle Scholar
  40. 40.
    Jeeves, W. P., and A. J. Rainbow, X-ray-enhanced reactivation of UV-irradiated adenovirus in normal human fibroblasts, Mutat. Res., 60 (1979) 33–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Kakunaga, T., Requirement for cell replication in the fixation and expression of the transformed state in mouse cells treated with 4-nitroquinoline 1-oxide, Intern. J. Cancer, 14 (1974) 736–742.CrossRefGoogle Scholar
  42. 42.
    Kakunaga, T., Caffeine inhibits cell transformation by 4-nitro-quinoline-1-oxide, Nature, 258 (1975) 248–250.PubMedCrossRefGoogle Scholar
  43. 43.
    Kimball, R. F., The relation between repair of radiation damage and mutation induction, Photochem. Photobiol., 8 (1969) 515–520.CrossRefGoogle Scholar
  44. 44.
    Kondo, S., DNA repair and evolutionary considerations, In: Advances in Biophysics, Vol. 7, M. Kotani, Ed., Univ. of Tokyo Press, Tokyo, 1975, pp. 91–162.Google Scholar
  45. 45.
    Knudson, A. G., Jr., Mutations and childhood cancer: A probabilistic model for the incidence of retinoblastoma, Proc. Natl. Acad. Sci. (U.S.), 72 (1975) 5116–5120.CrossRefGoogle Scholar
  46. 46.
    Kraemer, K. H., Progressive generative diseases associated with defective DNA repair: xeroderma pigmentosum and ataxia telangiectasia, In: DNA Repair Processes, W. W. Nichols and D. G. Murphy, Eds., Symposia Specialists Inc., Miami, 1977, pp. 37–71.Google Scholar
  47. 47.
    Kuroki, T., and S. Miyashita, Isolation of UV-sensitive clones from mouse cell lines by Lederberg Style replica plating J. Cell Physiol., 90 (1977) 79–90.CrossRefGoogle Scholar
  48. 48.
    Lytle, C. D., and J. Copey, Enhanced survival of ultraviolet-irradiated herpes simplex virus in carcinogen-pretreat cells, Nature, 272 (1978) 60–62.PubMedCrossRefGoogle Scholar
  49. 49.
    Maher, V. M., and J. J. McCormick, Effect of DNA repair on the cytotoxicity and mutagenicity of UV irradiation and of chemical carcinogens in normal and xeroderma pigmentosum cells, In: Biology of Radiation Carcinogenesis, J.M. Yuhas, R. W. Tennant, and J. D. Regan, Eds., Raven Press, New York, 1976, pp. 129–145.Google Scholar
  50. 50.
    Maher, V. M., L. M. Ouelette, M. Mittlestat, and J. J. McCormick, Synergistic effect of caffeine on the cytotoxicity of ultraviolet irradiation and of hydrocarbon epoxides in strains of xeroderma pigmentosum, Nature, 258 (1975) 760–763.PubMedCrossRefGoogle Scholar
  51. 51.
    Marquart, H., Cell cycle dependence of chemical induced malignant transformation in vitro, Cancer Res., 34 (1974) 1612–1615.Google Scholar
  52. 52.
    Milman, G., E. Lee, G. S. Ghangas, J. R. McLaughlin, and M. George, Analysis of HeLa cell hypoxanthine phosphoribosyl-transferase mutants and revertants by two-dimensional polyacrylamide gel electrophoresis: Evidence for silent gene activation, Proc. Natl. Acad. Sci. (U.S.), 73 (1976) 4589–4593.CrossRefGoogle Scholar
  53. 53.
    Milo, G., and J. A. DiPaolo, Neoplastic transformation of human diploid cells in vitro after chemical carcinogen treatment, Nature, 275 (1978) 130–132.PubMedCrossRefGoogle Scholar
  54. 54.
    Moehring, T. J., and J. M. Moehring, Selection and characterization of cells resistant to diphtheria toxin and Pseudomonas exotoxin A: presumptive translational mutants, Cell, 11 (1977) 447–454.PubMedCrossRefGoogle Scholar
  55. 55.
    Nagasawa, H., and R. Yanai, Frequency of mammary cell division in relation to age: Its significance in the induction of mammary tumors by carcinogens in rats, J. Natl. Cancer Inst., 52 (1974) 609–610.PubMedGoogle Scholar
  56. 56.
    Painter, R. B., Does ultraviolet light enhance postreplication repair in mammalian cells? Nature, 275 (1978) 243–245.PubMedCrossRefGoogle Scholar
  57. 57.
    Peterson, A. R., J. S. Bertram, and C. Heidelberger, Cell cycle dependency of DNA damage and repair in transformable mouse fibroblasts treated with N-methyl-N′-nitro-N-nitrosoguanidine, Cancer Res., 34 (1974) 1600–1607.PubMedGoogle Scholar
  58. 58.
    Pound, A. W., Carcinogenesis and cell proliferation, New Zealand Med. J., 67 (1968) 88–95.PubMedGoogle Scholar
  59. 59.
    Rauth, A. M., Evidence for dark-reactivation of ultraviolet light damage in mouse L cells, Rad. Res., 31 (1967) 121–128.CrossRefGoogle Scholar
  60. 60.
    Regan, J. E., J. E. Trosko, and W. L. Carrier, Evidence for excision of ultraviolet-induced pyrimidine dimers from the DNA of human cells in vitro, Biophys. J., 8 (1968) 319–325.PubMedCrossRefGoogle Scholar
  61. 61.
    Reznikoff, C. A., J. S. Bertram, D. W. Brankow, and C. Heidelberger, Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to post confluence inhibition of cell division, Cancer Res., 33 (1973) 3231–3238.PubMedGoogle Scholar
  62. 62.
    Riddle, J. C., and A. W. Hsie, An effect of cell-cycle position on ultraviolet-light induced mutagenesis in Chinese hamster ovary cells, Mutat. Res., 52 (1978) 409–420.PubMedCrossRefGoogle Scholar
  63. 63.
    Roberts, J. J., and K. N. Ward, Inhibition of post-replication repair of alkylated DNA by caffeine in Chinese hamster cells but not HeLa cells, Chem.-Biol. Interact., 7 (1973) 241–264.PubMedCrossRefGoogle Scholar
  64. 64.
    Roberts, J. J., The repair of DNA modified by cytotoxic, mutagenic and carcinogenic chemicals, In: Advances in Radiation Biology, Vol. 7, J. Lett and H. Adler, Eds., Academic Press, New York, 1978, pp. 211–436.Google Scholar
  65. 65.
    Rosenstein, B., and B. M. Ohlsson-Wilheim, Isolation of UV-sensitive clones from a haploid frog cell line, Somatic Cell Genet., 5 (1979) 117–128.PubMedCrossRefGoogle Scholar
  66. 66.
    Sarasin, A. R., and P. C. Hanawalt, Carcinogens enhance survival of UV-irradiated Simian virus 40 in treated monkey kidney cells: Induction of recovery pathway, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 346–350.CrossRefGoogle Scholar
  67. 67.
    Sedgwick, S. G., Inducible error-prone repair in Escherichia coli, Proc. Natl. Acad. Sci. (U.S.), 72 (1975) 2753–2757.CrossRefGoogle Scholar
  68. 68.
    Setlow, R. B., and W. L. Carrier, The disappearance of thymine dimers from DNA: An error-correcting mechanism, Proc. Natl. Acad. Sci. (U.S.), 51 (1964) 226–231.CrossRefGoogle Scholar
  69. 69.
    Setlow, R. B., J. D. Regan, J. German, and W. L. Carrier, Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to the DNA, Proc. Natl. Acad. Sci. (U.S.), 64 (1969) 1035–1041.CrossRefGoogle Scholar
  70. 70.
    Shiomi, T., and Sato, K., Isolation of UV-sensitive variants of human FL cells by a viral suicide method, Somat. Cell Genet., 5 (1979) 193–201.PubMedCrossRefGoogle Scholar
  71. 71.
    Siminovitch, L., On the nature of hereditable variation in cultured somatic cells, Cell, 7 (1976) 1–11.PubMedCrossRefGoogle Scholar
  72. 72.
    Simons, J. W. I. M., Development of a liquid holding technique for the study of DNA-repair in human diploid fibroblasts, Mutat. Res., 59 (1979) 273–283.PubMedCrossRefGoogle Scholar
  73. 73.
    Sinard, A., and R. Daoust, DNA synthesis and neoplastic transformation in rat liver parenchyma, Cancer Res., 26 (1966) 1665–1672.Google Scholar
  74. 74.
    Sinex, F. M., The mutation theory of ageing, In: Theoretical Aspects of Ageing, M. Rickstein, M. L. Sussman, and J. Chesky, Eds., Academic Press, New York, 1974, pp. 23–32.Google Scholar
  75. 75.
    Smith, K. C., D. A. Youngs, E. Von der Schuren, K. M. Carlson, and N. J. Sargentini, Excision repair and mutagenesis are complex processes, In: DNA Repair Mechanisms, P. Hanawalt, E. G. Friedberg, and C. F. Fox, Eds., Academic Press, New York, 1978, pp. 247–250.Google Scholar
  76. 76.
    Smith, P. D., Mutagen sensitivity of Drosophila melanogaster, I. Isolation and preliminary characterization of a methyl methane-sulfonate-sensitive strain, Mutat. Res., 20 (1973) 215–220.PubMedCrossRefGoogle Scholar
  77. 77.
    Schultz, R., C. C. Chang, and J. E. Trosko, The mutation studies of mutagen sensitive and DNA repair mutants of Chinese hamster fibroblasts, submitted.Google Scholar
  78. 78.
    Schultz, R., J. E. Trosko, and C. C. Chang, Isolation and partial characterization of mutagen sensitive and DNA repair mutants of Chinese hamster fibroblasts, submitted.Google Scholar
  79. 79.
    Stamato, T. D., and C. A. Waldren, Isolation of UV-sensitive variants of CHO-KI by nylon cloth replica plating, Somat. Cell Genet., 3 (1977) 431–440.PubMedCrossRefGoogle Scholar
  80. 80.
    Takebe, H., S. Nii, M. I. Ishii, and H. Utsumi, Comparative studies of host-cell reactivation, colony forming ability and excision repair after UV irradiation of xeroderma pigmentosum, normal human and some other mammalian cells, Mutat. Res., 25 (1974) 383–390.PubMedCrossRefGoogle Scholar
  81. 81.
    Terzaghi, M., and J. Little, Repair of potentially lethal radiation damage in mammalian cells is associated with enhancement of malignant transformation, Nature, 253 (1975) 548–549.PubMedCrossRefGoogle Scholar
  82. 82.
    Trosko, J. E., and C. C. Chang, The role of mutagenesis in carcinogenesis, In: Photochemical and Photobiological Reviews, K. C. Smith, Ed., Plenum Press, New York, 1978, pp. 135–162.CrossRefGoogle Scholar
  83. 83.
    Trosko, J. E., and C. C. Chang, Chemical carcinogenesis as a consequence of alterations in the structure and function of DNA, In: Chemical Carcinogens and DNA, P. Grover, Ed., CRC Press, Boca Raton, 1979, pp. 181–200.Google Scholar
  84. 84.
    Trosko, J. E., and R. W. Hart, DNA mutation frequencies in mammals, Inter-discipl. Topics Geront., 9 (1976) 168–197.Google Scholar
  85. 85.
    Trosko, J. E., and C. C. Chang, Role of mutations and epigenetic changes in carcinogenesis: Correlations between chemical and radiation-induced carcinogenesis, In: Advances in Radiation Biology, J. T. Lett, Ed., in press.Google Scholar
  86. 86.
    Warwick, G. P., Effect of the cell cycle on carcinogenesis, Fed. Proc, 30 (1971) 1760–1765.PubMedGoogle Scholar
  87. 87.
    Williamson, R. C. N., F. L. R. Bauer, J. E. A. Oscarson, J. S. Ross, and R. A. Malt, Promotion of azoxymethane-induced colonic neoplasia by resection of the proximal small bowel, Cancer Res., 38 (1978) 3212–3217.PubMedGoogle Scholar
  88. 88.
    Witkin, E. M., Relationships among repair, mutagenesis and survival: overview, In: Molecular Mechanisms for Repair of DNA, Part A, P. Hanawalt and R. B. Setlow, Eds., Plenum Press, New York, 1975, pp. 347–355.CrossRefGoogle Scholar
  89. 89.
    Witkin, E. M., Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev., 40 (1976) 869–907.PubMedGoogle Scholar
  90. 90.
    Wolff, S., Sister chromatid exchange, In: Annual Review of Genetics, Vol. II, H. L. Roman, A. Campbell, and L. M. Sandler, Eds., Annual Reviews Inc., Palo Alto, 1977, pp. 183–202.Google Scholar
  91. 91.
    Yotti, L. P., C. C. Chang, and J. E. Trosko, Elimination of metabolic cooperation in Chinese hamster cells by a tumor promoter, Science, 206 (1979) 1089–1091.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • James E. Trosko
    • 1
  • Roger S. Schultz
    • 1
  • C. C. Chang
    • 1
  • Tom Glover
    • 1
  1. 1.Department of Human Development, College of Human MedicineMichigan State UniversityEast LansingUSA

Personalised recommendations