Advertisement

Role of Cellular Systems in Modifying the Response to Chemical Mutagens

  • B. Strauss
  • K. N. Ayres
  • K. Bose
  • P. Moore
  • R. Sklar
  • K. Tatsumi
Part of the Basic Life Sciences book series (BLSC, volume 15)

Summary

Neocarzinostatin (NCS) produces apurinic/apyrimidinic (AP) sites in DNA which are repaired by the AP excision repair system. Survival after NCS treatment is not determined exclusively by this repair system, presumably because of the production of other, lethal, lesions. MNNG also produces multiple lesions which may be handled by cells in different ways. In E. coli, MNNG treatment results in rapid induction of a system which removes O6-methylguanine. Inhibition of this induction with chloramphenicol results in a large increase in mutation frequency. Induction of an enzyme which removes O6-methylguanine probably accounts for the enrichment of mutations near DNA growing points. MNNG also induces multiple closely linked mutations. The production of multiple mutations but not of single-site mutations is blocked in rec A and uvr E strains. The exact nucleotide site at which DNA synthesis is blocked in vitro by reaction with mutagens can be observed in a øX174 system in which the nucleotide sequence is known. DNA polymerase I catalyzed synthesis is blocked one nucleotide before the reacted base on the template strand. In contrast, with some damaged templates, AMV reverse transcriptase can insert a base at the level of the reacted nucleotide on the template.

Keywords

Xeroderma Pigmentosum Repair Synthesis Single Site Mutation Dose Reduction Factor MNNG Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altamirano-Dimas, M., R. Sklar, and B. Strauss, Selectivity of the excision of alkylation products in a xeroderma-pigmentosum-derived lymphoblastoid line, Mutat. Res., 60 (1979) 197–206.PubMedCrossRefGoogle Scholar
  2. 2.
    Ames, B., Identifying environmental chemicals causing mutations and cancer, Science, 204 (1979) 587–593.PubMedCrossRefGoogle Scholar
  3. 3.
    Andrews, A., J. Robbins, K. Kraemer, and D. Buell, Xeroderma pigmentosum long term lymphoid lines with increased ultraviolet sensitivity, J. Natl. Cancer Inst., 53 (1974) 691–693.PubMedGoogle Scholar
  4. 4.
    Beerman, T., and I. Goldberg, DNA strand scission by the antitumor protein Neocarzinostatin, Biochem. Biophys. Res. Comm., 59 (1974) 1254–1261.PubMedCrossRefGoogle Scholar
  5. 5.
    Bose, K., P. Karran, and B. Strauss, Repair of depurinated DNA in vitro by enzymes purified from human lymphoblasts, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 794–798.CrossRefGoogle Scholar
  6. 6.
    Cerdá-Olmedo, E., P. Hanawalt, and N. Guerola, Mutagenesis of the replication point by nitrosoguanidine: map and pattern of replication of the Escherichia coli chromosome, J. Mol. Biol., 33 (1968) 705–519.PubMedCrossRefGoogle Scholar
  7. 7.
    D’Andrea, A., and W. Haseltine, Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinostatin and bleomycin, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 3608–3612.CrossRefGoogle Scholar
  8. 8.
    Gopinathan, K., L. Weymouth, T. Kunkel, and L. Loeb, Mutagenesis in vitro by DNA polymerase from an RNA tumour virus, Nature, 278 (1979) 857–859.PubMedCrossRefGoogle Scholar
  9. 9.
    Hatayama, T., I. Goldberg, M. Takeshita, and A. Grollman, Nucleotide specificity in DNA scission by neocarzinostatin, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 3603–3607.CrossRefGoogle Scholar
  10. 10.
    Higgins, N. P., and B. Strauss, Differences in the ability of human lymphoblastoid lines to exclude bromodeoxyuridine and in their sensitivity to methyl methanesulfonate and to incorporated (3h) thymidine, Cancer Res., 39 (1979) 312–320.PubMedGoogle Scholar
  11. 11.
    Hill, T., L. Prakash, and B. Strauss, Mutagen stability of alkylation-sensitive mutants of Bacillus subtilis, J. Bacteriol., 110 (1972) 47–55.PubMedGoogle Scholar
  12. 12.
    Hsu, W., E. Lin, R. Harvey, and S. Weiss, Mechanism of phage øx174 DNA inactivation by benzo(a)pyrene-7,8-dihydrodiol-9,10 epoxide, Proc. Natl. Acad. Sci. (U.S.), 74 (1977) 3335–3339.CrossRefGoogle Scholar
  13. 13.
    Hutchinson, C., S. Phillips, M. Edgell, S. Gillam, P. Jahnke, and M. Smith, Mutagenesis at a specific position in a DNA sequence, J. Biol. Chem., 253 (1978) 6551–6560.Google Scholar
  14. 14.
    Jeggo, P., M. Defais, L. Samson, and P. Schendel, An adaptive response of E. coli to low levels of alkylating agent: comparison with previously characterized DNA repair path ways, Mol. Gen. Genet., 157 (1977) 1–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Karran, P., N. P. Higgins, and B. Strauss, Intermediates in excision repair by human cells: Use of S1 nuclease and benzoylated naphthoylated cellulose to reveal single-strand breaks, Biochemistry, 16 (1977) 4483–4490.PubMedCrossRefGoogle Scholar
  16. 16.
    Kriek, E., J. Miller, V. Juhl, and E. Miller, 8-(N-2-Fluorenyl-acetamido)-guanosine, and arylamidation reaction product of guanosine and the carcinogen N-acetoxy-N-2-fluorenylacetamide in neutral solution, Biochemistry, 6 (1967) 177–182.PubMedCrossRefGoogle Scholar
  17. 17.
    Maaloe, O., and N. Kjeldgaard, Control of Macromolecular Synthesis, W. A. Benjamin, New York, 1966.Google Scholar
  18. 18.
    Moore, P., and B. Strauss, Sets of inhibition of in vitro DNA synthesis in carcinogen and UV-treated øx174 DNA, Nature, 278 (1979) 664–666.PubMedCrossRefGoogle Scholar
  19. 19.
    Poon, R., T. Beerman, and I. Goldberg, Characterization of DNA strand breakage in vitro by the antitumor protein Neocarzinostatin, Biochemistry, 16 (1977) 486–493.PubMedCrossRefGoogle Scholar
  20. 20.
    Prakash, L., The relation between repair of DNA and radiation and chemical mutagenesis in Saccharomyces cerevisiae, Mutat. Res., 41 (1976) 244–248.Google Scholar
  21. 21.
    Samson, L., and J. Cairns, A new pathway for DNA repair in Escherichia coli, Nature, 267 (1977) 281–283.PubMedCrossRefGoogle Scholar
  22. 22.
    Sanger, F., G. Air, B. Barrell, N. Brown, A. Coulson, J. Fiddes, C. Hutchinson, P. Slocombe, and M. Smith, Nucleotide sequence of bacteriophage øx174 DNA, Nature 265 (1977) 687–697.PubMedCrossRefGoogle Scholar
  23. 23.
    Sanger, F., S. Nicklen, and A. Coulson, DNA sequencing with chain terminating inhibitors, Proc. Natl. Acad. Sci. (U.S.), 74 (1977) 5463–5467.CrossRefGoogle Scholar
  24. 24.
    Sato, K., R. Slesinski, and J. Littlefield, Chemical mutagenesis at the phosphoribosyltransferase locus in cultured human lymphoblasts, Proc. Natl. Acad. Sci. (U.S.), 69 (1972 1244–1248.CrossRefGoogle Scholar
  25. 25.
    Schendel, P., and P. Robins, Repair of 06-methylguanine in adapted Escherichia coli, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 6017–6020.CrossRefGoogle Scholar
  26. 26.
    Scudiero, D., E. Henderson, A. Norin, and B. Strauss, The measurement of chemically-induced DNA repair synthesis in human cells by BND-cellulose chromatography, Mutat. Res., 29 (1975).Google Scholar
  27. 27.
    Setlow, R., Cyclolbutane-type pyrimidine dimers in polynucleotides, Science, 153 (1966) 379–386.PubMedCrossRefGoogle Scholar
  28. 28.
    Sharp, P., B. Sugden, and J. Sambrook, Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose-ethidium bromide electrophoresis, Biochemistry, 12 (1973) 3055–3063.PubMedCrossRefGoogle Scholar
  29. 29.
    Shortle, D., and D. Nathans, Local mutagenesis: A method for generating viral mutants with base substitutions in preselected regions of the viral genome, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 2170–2174.CrossRefGoogle Scholar
  30. 30.
    Sklar, R., Enhancement of nitrosoguanidine mutagenesis by chloramphenicol in Escherichia coli K-12, J. Bacteriol., 136 (1978) 460–462.PubMedGoogle Scholar
  31. 31.
    Tatsumi, K., Unpublished data.Google Scholar
  32. 32.
    Verma, I., The reverse transcriptase, Biochim. Biophys. Acta, 473 (1977) 1–38.PubMedGoogle Scholar
  33. 33.
    Villani, G., S. Boiteux, and M. Radman, Mechanism of ultraviolet-induced mutagenesis: Extent and fidelity of in vitro DNA synthesis on irradiated templates, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 3037–3041.CrossRefGoogle Scholar
  34. 34.
    Weinstein, I. G., and D. Grunberger, Structural and functional changes in nucleic acids modified by chemical carcinogens, In: Chemical Carcinogenesis, Part A, P. Ts’o and J. DiPaolo, Eds., Marcel Dekker, New York, 1974, pp. 217–235.Google Scholar
  35. 35.
    Weinstein, I., A. Jeffrey, K. Jennette, S. Blobstein, R. Harvey, C. Harris, H. Autrup, H. Kasai, and K. Nakanishi, Benzo (a)-pyrenediol-epxoides as intermediates in nucleic acid binding in vitro and in vivo, Science, 193 (1976) 592–595.PubMedCrossRefGoogle Scholar
  36. 36.
    Witkin, E., Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev., 40 (1976) 869–907.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • B. Strauss
    • 1
  • K. N. Ayres
    • 1
  • K. Bose
    • 1
  • P. Moore
    • 1
  • R. Sklar
    • 1
  • K. Tatsumi
    • 1
  1. 1.Department of MicrobiologyThe University of ChicagoChicagoUSA

Personalised recommendations