Chromosome Aberration Formation and Sister Chromatid Exchange in Relation to DNA Repair in Human Cells

  • Masao S. Sasaki
Part of the Basic Life Sciences book series (BLSC, volume 15)


Apparent association between the ability to induce chromosome aberrations and sister chromatid exchanges and mutagenic-carcinogenic potential found in a variety of physical and chemical agents has led us to speculate that these cytogenetic changes might be reflection of DNA damage and repair and might provide indices of mutagenic changes. However, the mechanisms of their formation and their relation to DNA repair as well as the mechanism of their linking to mutation are by no means well understood. Studies in some human genetic mutant cells defective in their ability to repair DNA damage indicate, as a testable proposition, that sister chromatid exchanges and chromsome aberrations are cytological manifestations of replication-mediated dual-step repair pathways that are in operation to tolerate DNA damage when damage-bearing DNA enters and passes through semiconservative replication. The observations are also in line with idea that the majority of sister chromatid exchanges can arise when damage DNA attempts replication possibly by a process relating with the replicative bypass repair mechanisms such as those proposed by Fujiwara and Tatsumi [34] and Higgins et al. [54], while chromosome aberration formation and some fraction of sister chromatid exchanges are related with the postreplication repair processes which attempt to rescue damaged template post-replicationally by de novo synthesis or recombination type repair systems. The former sister chromatid exchange-relating process seems to link mutation to less extent, if any, than the latter process, which is caffeine sensitive and likely to be error-prone.


Chromosome Aberration Sister Chromatid Exchange Ataxia Telangiectasia Xeroderma Pigmentosum Ataxia Telangiectasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arlett, C. F., S. A. Harcourt, and B. C. Broughton, The influence of caffeine on cell survival in excision proficient and excision-deficient xeroderma pigmentosum and normal human cell strains following ultraviolet lightirradiation, Mutat. Res., 33 (1975) 341–346.PubMedCrossRefGoogle Scholar
  2. 2.
    Bartram, C. R., T. Koske-Westphal, and E. Passarge, Chromatid exchange in ataxia telangiectasia, Bloom syndrome, Werner syndrome, and xeroderma pigmentosum, Ann. Hum. Genet., 40 (1976) 79–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Bender, M. A, J. S. Bedford, and J. B. Mitchell, Mechanisms of chromosomal aberration production. II. Aberrations induced by 5-bromodeoxyuridine and visible light, Mutat. Res., 20 (1973) 403–416.PubMedCrossRefGoogle Scholar
  4. 4.
    Bender, M. A, H. G. Griggs, and J. S. Bedford, Mechanisms of chromosomal aberration production. III. Chemicals and ionizing radiation, Mutat. Res., 23 (1974) 197–212.PubMedCrossRefGoogle Scholar
  5. 5.
    Bender, M. A, H. G. Griggs, and P. L. Walker, Mechanisms of chromosomal aberration production. I. Aberration induction by ultraviolet light, Mutat. Res., 20 (1973) 387–402.PubMedCrossRefGoogle Scholar
  6. 6.
    Boyd, J. B., and R. B. Setlow, Characterization of postreplication repair in mutagen-sensitive strains of Drosophila melanogaster, Genetics, 84 (1976) 507–526.PubMedGoogle Scholar
  7. 7.
    Boyd, J. B., M. D. Golino, and R. B. Setlow, The mei-9 a mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair, Genetics, 84 (1976) 527–544.PubMedGoogle Scholar
  8. 8.
    Buhl, S. N., R. B. Setlow, and J. D. Regan, Steps in DNA chain elongation and joining after ultra-violet irradiation of human cells, Int. J. Radiat. Biol., 22 (1972) 417–424.CrossRefGoogle Scholar
  9. 9.
    Carrano, A. V., L. H. Thompson, P. A. Lindl, and J. L. Minkler, Sister chromatid exchange as an indicator of mutagenesis, Nature, 271 (1978) 551–553.PubMedCrossRefGoogle Scholar
  10. 10.
    Chaganti, R. S. K., S. Schonberg, and J. German, A manifold increase in sister chromatid exchange in Bloom’s syndrome lymphocytes, Proc. Natl. Acad. Sci. (U.S.), 71 (1974) 4508–4512.CrossRefGoogle Scholar
  11. 11.
    Cheng, W.-S., R. E. Tarone, A. D. Andrews, J. S. Whang-Peng, and J. H. Robbins, Ultraviolet light-induced sister chromatid exchanges in xeroderma pigmentosum and Cockayne’s syndrome lymphocyte cell lines, Cancer Res., 38 (1978) 1601–1609.PubMedGoogle Scholar
  12. 12.
    Cleaver, J. E., Defective repair replication of DNA in xeroderma pigmentosum, Nature, 218 (1968) 652–656.PubMedCrossRefGoogle Scholar
  13. 13.
    Cleaver, J. E., Xeroderma pigmentosum: A human disease in which an initial stage of DNA repair is defective, Proc. Natl. Acad. Sci. (U.S.), 63 (1969) 428–435.CrossRefGoogle Scholar
  14. 14.
    Cleaver, J. E., Repair replication of mammalian cell DNA: Effects of compounds that inhibit DNA synthesis or dark repair, Radiation Res., 37 (1969) 334–348.PubMedCrossRefGoogle Scholar
  15. 15.
    Cleaver, J. E., Repair of alkylation damage in ultraviolet-sensitive (xeroderma pigmentosum) human cells, Mutat. Res., 12 (1971) 53–462.Google Scholar
  16. 16.
    Cleaver, J. E., Xeroderma pigmentosum: Variants with normal DNA repair and normal sensitivity to ultraviolet light, J. Invest. Dermatol., 58 (1972) 124–128.PubMedCrossRefGoogle Scholar
  17. 17.
    Cleaver, J. E., DNA repair with purines and pyrimidines in radiation-and carcinogen-damaged normal and xeroderma pigmentosum human cells, Cancer Res., 33 (1973) 362–369.PubMedGoogle Scholar
  18. 18.
    Cleaver, J. E., DNA repair mechanisms and the generation of sister chromatid exchanges in human cell lines from xeroderma pigmentosum patients, In: Molecular Human Cytogenetics, R. S. Sperkes, D. E. Comings and C. F. Fox (Eds.), Academic Press, New York, 1977, pp. 341–354.Google Scholar
  19. 19.
    Cleaver, J. E., Repair replication and sister chromatid exchanges as indicators of excisable and nonexcisable damage in human (xeroderma pigmentosum) cells, J. Toxicol. Environ. Health, 2 (1977) 1377–1394.Google Scholar
  20. 20.
    Cleaver, J. E., DNA repair and its coupling to DNA replication in eukaryotic cells, Biochim. Biophys. Acta, 516 (1978) 489–516.PubMedGoogle Scholar
  21. 21.
    Cleaver, J. E., and G. H. Thomas, Single strand interruptions in DNA and the effects of caffeine in Chinese hamster cells irradiated with ultraviolet light, Biochem. Biophys. Res. Comm., 36 (1969) 203–208.PubMedCrossRefGoogle Scholar
  22. 22.
    Comings, D. E., What is a chromosome break? In: Chromosomes and Cancer, J. German (Ed.), John Wiley & Sons, New York, 1974, pp. 95–133.Google Scholar
  23. 23.
    Cox, R., and W. K. Masson, Do radiation-induced thioguanineresistant mutants of cultured mammalian cells arise by HGPRT gene mutation or X-chromosome rearrangements? Nature, 276 (1978) 629–630.PubMedCrossRefGoogle Scholar
  24. 24.
    De Grouchy, J., J. Bonnette, J. Brussieux, M. Roidot, and P. Begin, Cassures chromosomiques dans 1’incontinentia pigmenti. Etude d’une famille, Ann. Génet., 15 (1972) 61–65.PubMedGoogle Scholar
  25. 25.
    De Weerd-Kastelein, E. A., W. Keijzer, G. Rainaldi, and D. Bootsma, Induction of sister chromatid exchanges in xeroderma pigmentosum cells after exposure to ultraviolet light, Mutat. Res., 45 (1977) 253–261.PubMedCrossRefGoogle Scholar
  26. 26.
    Evans, H. J., Effect of ionizing radiation on mammalian chromosomes, In: Chromosomes and Cancer, J. German (Ed.), John Wiley & Sons, New York, 1974, pp. 191–237.Google Scholar
  27. 27.
    Evans, H. J., Molecular mechanisms in the induction of chromosome aberrations, In: Progress in Genetic Toxicology, D. Scott, B. A. Bridges, and F. H. Sobels (Eds.), Elsevier/ North-Holland Biomedical Press, Amsterdam, 1977, pp. 57–74.Google Scholar
  28. 28.
    Fornace, A. J., Jr., K. W. Kohn, and H. E. Kann, Jr., DNA single-strand breaks during repair of UV damage in human fibroblasts and abnormalities of repair in xeroderma pigmentosum, Proc. Natl. Acad. Sci. (U.S.), 73 (1969) 39–43.CrossRefGoogle Scholar
  29. 29.
    Fujiwara, Y., Characteristics of DNA synthesis following ultraviolet light irradiation in mouse L cells: postreplication repair, Exptl. Cell Res., 75 (1972) 483–489.CrossRefGoogle Scholar
  30. 30.
    Fujiwara, Y., Effects of cycloheximide on regulatory protein for initiating mammalian DNA replication at the nuclear membrane, Cancer Res., 32 (1972) 2089–2095.PubMedGoogle Scholar
  31. 31.
    Fujiwara, Y., T. Higashikawa, and M. Tatsumi, A retarded rate of DNA replication and normal level of DNA repair in Werner’s syndrome fibroblasts in culture, J. Cell. Physiol., 92 (1977) 365–374.PubMedCrossRefGoogle Scholar
  32. 32.
    Fujiwara, Y., and T. Kondo, Caffeine-sensitive repair of ultraviolet light-damaged DNA of mouse L-cells, Biochem. Biophys. Res. Comm., 47 (1972) 557–564.PubMedCrossRefGoogle Scholar
  33. 33.
    Fujiwara, Y., and M. Tatsumi, Repair of mitomycin C damage to DNA in mammalian cells and its impairment in Fanconi’s anemia cells, Biochem. Biophys. Res. Comm., 66 (1975) 592–598.PubMedCrossRefGoogle Scholar
  34. 34.
    Fujiwara, Y., and M. Tatsumi, Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: Caffeine sensitive and caffeine resistant mechanisms, Mutat. Res., 37 (1976) 91–110.PubMedCrossRefGoogle Scholar
  35. 35.
    Fujiwara, Y., M. Tatsumi, and M. S. Sasaki, Crosslink repair in human cells and its possible defect in Fanconi’s anemia cells, J. Mol. Biol., 113 (1977) 635–649.PubMedCrossRefGoogle Scholar
  36. 36.
    Galloway, S. M., What are sister chromatid exchanges? In: DNA Repair Processes, W. W. Nichols and D. G. Murphy (Eds.), Stralton Intern. Med. Book Coop., New York, 1977, pp. 191–201.Google Scholar
  37. 37.
    Galloway, S. M., Ataxia telangiectasia: the effect of chemical mutagens and x-rays on sister chromatid exchanges in blood lymphocytes, Mutat. Res., 45 (1977) 343–349.PubMedCrossRefGoogle Scholar
  38. 38.
    Galloway, S. M., and H. J. Evans, Sister chromatid exchanges in human chromosomes from normal individuals and patients with ataxia telangiectasia, Cytogenet. Cell Genet., 15 (1975) 17–29.PubMedCrossRefGoogle Scholar
  39. 39.
    Gatti, M., Genetic control of chromosome breakage and rejoining in Drosophila melanogaster: spontaneous chromosome aberrations in x-linked mutants defective in DNA metabolism, Proc. Natl. Acad. Sci. (U.S.), 76 (1979) 1377–1381.CrossRefGoogle Scholar
  40. 40.
    Gatti, M., S. Pimpinelli, and G. Olivieri, The frequency and distribution of isolabeling in Chinese hamster chromosomes after exposure to x-rays, Mutat. Res., 23 (1974) 229–238.PubMedCrossRefGoogle Scholar
  41. 41.
    Gatti, M., C. Tanzarella, and G. Olivieri, Variation with sex of irradiation-induced chromosome damage in somatic cells of Drosophila melanogaster. Nature, 247 (1974) 151–152.PubMedCrossRefGoogle Scholar
  42. 42.
    Gautschi, J. R., and R. M. Kern, DNA replication in mammalian cells in the presence of cycloheximide, Exptl. Cell Res., 80 (1973) 15–26.PubMedCrossRefGoogle Scholar
  43. 43.
    Geiger, L. E., and D. R. Morris, Polyamine deficiency reduces the rate of DNA replication fork movement in Escherichia coli, Nature, 272 (1978) 730–732.PubMedCrossRefGoogle Scholar
  44. 44.
    German, J., Cytogenetical evidence for crossing over in vitro in human lymphoid cells, Science, 144 (1964) 298–301.PubMedCrossRefGoogle Scholar
  45. 45.
    German, J., Chromosomal breakage syndrome. In: Birth Defects Original Article Series, Vol. 5, National Foundation-March of Dimes, New York, 1969, pp. 117–131.Google Scholar
  46. 46.
    German, J., R. Archibald, and D. Bloom, Chromosomal breakage in a rare and probably genetically determined syndrome of man, Science, 148 (1965) 506–507.PubMedCrossRefGoogle Scholar
  47. 47.
    German, J., L. P. Crippa, and D. Bloom, Bloom’s syndrome. III. Analysis of the chromosome aberration characteristic of this disorder, Chromosoma, 48 (1974) 361–366.PubMedCrossRefGoogle Scholar
  48. 48.
    Gianelli, G., P. F. Benson, S. A. Pawsey, and P. E. Polani, Ultraviolet light sensitivity and delayed DNA chain maturation in Bloom’s syndrome fibroblasts, Nature, 265 (1977) 466–469.CrossRefGoogle Scholar
  49. 49.
    Goth-Goldstein, R., Repair of DNA damaged by alkylating carcinogens is defective in xeroderma pigmentosum-derived fibroblasts, Nature, 267 (1977) 81–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Gropp, A., and G. Flatz, Chromosome breakage and blastic transformation of lymphocytes in ataxia telangiectasia, Humangenetik, 5 (1967) 77–79.PubMedCrossRefGoogle Scholar
  51. 51.
    Hand, R., and J. German, A retarded rate of DNA chain growth in Bloom’s syndrome, Proc. Natl. Acad. Sci. (U.S.), 72 (1975) 758–762.CrossRefGoogle Scholar
  52. 52.
    Harnden, D. G., Ataxia telangiectasia syndrome: cytogenetic and cancer aspects, In: Chromosomes and Cancer, J. German (Ed.), John Wiley & Sons, New York, 1974, pp. 619–636.Google Scholar
  53. 53.
    Hartley-Asp, B., The influence of caffeine on the mitomycin C-induced chromosome aberration frequency in normal human and xeroderma pigmentosum cells. Mutat. Res., 49 (1978) 117–126.PubMedCrossRefGoogle Scholar
  54. 54.
    Higgins, N. P., K. Kato, and B. Strauss, A model for replication repair in mammalian cells, J. Mol. Biol., 101 (1976) 417–425.PubMedCrossRefGoogle Scholar
  55. 55.
    Higurashi, M., and P. E. Conen, In vitro chromosomal radio-sensitivity in “chromosomal breakage syndrome,” Cancer, 32 (1973) 380–383.PubMedCrossRefGoogle Scholar
  56. 56.
    Holliday, R., A mechanism for gene conversion in fungi, Genet. Res., 5 (1964) 282–304.CrossRefGoogle Scholar
  57. 57.
    Holloman, W. K., and C. M. Radding, Recombination promoted by superhelical DNA and the recA gene of Escherichia coli, Proc. Natl. Acad. Sci. (U.S.), 73 (1976) 3910–3914.CrossRefGoogle Scholar
  58. 58.
    Hyodo, M., H. Koyama, and T. Ono, Intermediate fragments of newly replicated DNA in mammalian cells. II. Effect of cycloheximide on DNA chain elongation, Exptl. Cell Res., 67 (1971) 461–463.PubMedCrossRefGoogle Scholar
  59. 59.
    Ikushima, T., Role of sister chromatid exchanges in chromatid aberration formation, Nature, 268 (1977) 235–236.PubMedCrossRefGoogle Scholar
  60. 60.
    Inoue, T., K. Kirano, A. Yokoiyama, T. Kada, and H. Kato, DNA repair enzymes in ataxia telangiectasia and Bloom’s syndrome fibroblasts, Biochim. Biophys. Acta, 479 (1977) 497–500.PubMedGoogle Scholar
  61. 61.
    Ishii, Y., and M. A Bender, Caffeine inhibition of prereplication repair of mitomycin C-induced DNA damage in human peripheral lymphocytes, Mutat. Res., 51 (1978) 419–425.PubMedCrossRefGoogle Scholar
  62. 62.
    Jacobs, A. J., R. L. O’Brien, J. W. Parker, and P. Paolilli, Abnormal DNA repair of 4-nitroquinoline-1-oxide-induced damage by lymphocytes in xeroderma pigmentosum, Mutat. Res., 16 (1972) 420–424.PubMedCrossRefGoogle Scholar
  63. 63.
    Kaplan, J. C, G. B. Zamansky, P. H. Black, and S. A. Latt, Parallel induction of sister chromatid exchanges and infectious virus from SV40-transformed cells by alkylating agents, Nature, 271 (1978) 662–663.PubMedCrossRefGoogle Scholar
  64. 64.
    Kato, H., Induction of sister chromatid exchange by ultraviolet light and its inhibition by caffeine, Exptl. Cell Res., 82 (1973) 383–390.PubMedCrossRefGoogle Scholar
  65. 65.
    Kato, H., Possible role of DNA synthesis in formation of sister chromatid exchanges, Nature, 252 (1974) 739–741.PubMedCrossRefGoogle Scholar
  66. 66.
    Kato, H., Induction of sister chromatid exchanges by chemical mutagens and its possible relevance to DNA repair, Exptl. Cell Res., 85 (1974) 239–247.PubMedCrossRefGoogle Scholar
  67. 67.
    Kato, H., Spontaneous sister chromatid exchanges detected by a BUdR-labelling method, Nature, 251 (1974) 70–72.PubMedCrossRefGoogle Scholar
  68. 68.
    Kato, H., Mechanisms for sister chromatid exchanges and their relation to the production of chromosome aberrations, Chromosoma, 59 (1977) 179–191.PubMedCrossRefGoogle Scholar
  69. 69.
    Kato, H., Spontaneous and induced sister chromatid exchanges as revealed by the BUdR-labelling method, Int. Rev. Cytol., 49 (1977) 55–97.PubMedCrossRefGoogle Scholar
  70. 70.
    Kato, H., and H. Shimada, Sister chromatid exchanges induced by mitomycin C: A new method of detecting DNA damage at chromosome level, Mutat. Res., 28 (1975) 459–464.PubMedCrossRefGoogle Scholar
  71. 71.
    Kato, H., and H. F. Stich, Sister chromatid exchanges in ageing and repair-deficient human fibroblasts, Nature, 260 (1976) 447–448.PubMedCrossRefGoogle Scholar
  72. 72.
    Kavenoff, R., and B. H. Zimm, Chromosome-sized DNA molecules from Drosophila, Chromosoma, 41 (1973) 1–27.PubMedCrossRefGoogle Scholar
  73. 73.
    Khilman, B. A., Molecular mechanisms of chromosome breakage and rejoining, In: Advances in Cell and Molecular Biology, Vol. 1, E. J. DuPraw (Ed.), Academic Press, New York, 1971, pp. 59–107.Google Scholar
  74. 74.
    Khilman, B. A., Caffeine and Chromosomes, Elsevier, Amsterdam, 1977.Google Scholar
  75. 75.
    Khilman, B. A., and S. Sturelid, Effects of caffeine on the frequency of chromosomal aberrations and sister chromatid exchanges induced by chemical mutagens in root tips of Vicis faba, Hereditas, 88 (1978) 35–43.CrossRefGoogle Scholar
  76. 76.
    Kinsella, A. R., and M. Radman, Tumor promoter induced sister chromatid exchanges: relevance to mechanisms of carcinogenesis, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 6149–6153.CrossRefGoogle Scholar
  77. 77.
    Laird, C. D., Chromatid structure: Relationship between DNA content and nucleotide sequence diversity, Chromosoma, 32 (1971) 378–416.PubMedCrossRefGoogle Scholar
  78. 78.
    Lankas, G. R., Jr., C. S. Baxter, Jr., and R. T. Christian, Effect of tumor promoting agents on mutation frequencies in cultured V79 Chinese hamster cells, Mutat. Res., 45 (1977) 153–156.PubMedCrossRefGoogle Scholar
  79. 79.
    Latt, S. A., Microfluorimetric detection of deoxyribonucleic acid replication in human metaphase chromosomes, Proc. Natl. Acad. Sci. (U.S.), 70 (1973) 3395–3399.CrossRefGoogle Scholar
  80. 80.
    Latt, S. A., Sister chromatid exchanges, indices of human chromosome damage and induction by mitomycin C, Proc. Natl. Acad. Sci. (U.S.), 71 (1974) 3162–3166.CrossRefGoogle Scholar
  81. 81.
    Latt, S. A., and K. S. Loveday, Characterization of sister chromatid exchange induction by 8-methoxypsoralen plus near UV light, Cytogenet. Cell Genet., 21 (1978) 184–200.PubMedCrossRefGoogle Scholar
  82. 82.
    Latt, S. A., G. Stetten, L. A. Juergens, G. R. Buchanan, and P. S. Gerald, Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi’s anemia, Proc. Natl. Acad. Sci. (U.S.), 72 (1975) 4066–4070.CrossRefGoogle Scholar
  83. 83.
    Lehmann, A. R., Postreplication repair of DNA in ultraviolet-irradiated mammalian cells, J. Mol. Biol., 66 (1972) 319–337.PubMedCrossRefGoogle Scholar
  84. 84.
    Lehmann, A. R., Postreplication repair of DNA in mammalian cells, Life Sci., 15 (1974) 2005–2016.PubMedCrossRefGoogle Scholar
  85. 85.
    Lehmann, A. R., and S. Kirk-Bell, Effects of caffeine and theophylline on DNA synthesis in unirradiated and UV-irradiated mammalian cells, Mutat. Res., 26 (1974) 73–82.PubMedCrossRefGoogle Scholar
  86. 86.
    Lehmann, A. R., S. Kirk-Bell, C. F. Arlett, M. C. Paterson, P. H. M. Lohman, E. A. De Weerd-Kastelein, and D. Bootsma, Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation, Proc. Natl. Acad. Sci. (U.S.), 72 (1975) 219–223.CrossRefGoogle Scholar
  87. 87.
    Maher, V. H., L. M. Ouellette, R. D. Curren, and J. J. McCormick, Frequency of ultraviolet-light induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells, Nature, 261 (1976) 533–535.CrossRefGoogle Scholar
  88. 88.
    Marin, G., and D. M. Prescott, The frequency of sister chromatid exchanges following exposure to varying doses of H3-thymidine or x-rays, J. Cell Biol., 21 (1964) 159–167.PubMedCrossRefGoogle Scholar
  89. 89.
    Minyat, E. E., V. I. Ivanov, A. M. Kritzyn, L. E. Minchenkova, and A. K. Schyolkina, Spermine and spermidine-induced B to A transition of DNA in solution, J. Mol. Biol., 128 (1979) 397–409.PubMedCrossRefGoogle Scholar
  90. 90.
    Meselson, M. S., and C. M. Radding, A general model for genetic recombination, Proc. Natl. Acad. Sci. (U.S.), 72 (1975) 358–361.CrossRefGoogle Scholar
  91. 91.
    Nagasawa, H., and J. B. Little, Effect of tumor promoters, protease inhibitors, and repair processes on x-ray-induced sister chromatid exchanges in mouse cells, Proc. Natl. Acad. Sci. (U.S.), 76 (1979) 1943–1947.CrossRefGoogle Scholar
  92. 92.
    Nichols, W. W., C. I. Bradt, L. H. Toji, M. Godley, and M. Segawa, Induction of sister chromatid exchanges by transformation with simian virus 40, Cancer Res., 38 (1978) 960–964.PubMedGoogle Scholar
  93. 93.
    Nilsson, K., and A. R. Lehmann, The effect of methylated oxypurines on the size of newly-synthesized DNA and on the production of chromosome aberrations after UV irradiation in Chinese hamster cells, Mutat. Res., 30 (1975) 255–266.PubMedGoogle Scholar
  94. 94.
    Paterson, M. C., Ataxia telangiectasia: A model inherited disease linking deficient DNA repair with radiosensitivity and cancer proneness. In: DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, and C. F. Fox (Eds.), Academic Press, New York, 1978, pp. 637–650.Google Scholar
  95. 95.
    Paterson, M. C., B. P. Smith, P. H. M. Lohman, A. K. Anderson, and L. Fishman, Defective excision repair of γ-ray-damaged DNA in human (ataxia telangiectasia) fibroblasts, Nature, 260 (1976) 444–447.PubMedCrossRefGoogle Scholar
  96. 96.
    Pearson, P. L., J. D. Ellis, and H. J. Evans, A gross reduction in chiasma formation during meiotic prophase and a defective DNA repair mechanism associated with a case of human male infertility, Cytogenetics, 9 (1970) 460–467.PubMedCrossRefGoogle Scholar
  97. 97.
    Perry, P., and H. J. Evans, Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange, Nature, 258 (1975) 121–125.PubMedCrossRefGoogle Scholar
  98. 98.
    Perry, P., M. Jager, and H. J. Evans, Mutagen-induced sister chromatid exchanges in xeroderma pigmentosum and normal lymphocytes, In: Mutagen-Induced Chromosome Damage in Man, H. J. Evans and D. C. Lloyd (Eds.), Edinburgh University Press, Edinburgh, 1978, pp. 201–207.Google Scholar
  99. 99.
    Perry, P., and S. Wolff, New Giemsa method for the differential staining of sister chromatids, Nature, 251 (1974) 156–158.PubMedCrossRefGoogle Scholar
  100. 100.
    Petes, T. D., R. A. Farber, G. M. Tarrent, and R. Holliday, Altered rate of DNA replication in ageing human fibroblast culture, Nature, 251 (1974) 434–436.PubMedCrossRefGoogle Scholar
  101. 101.
    Politti, F., and A. Becchetti, Effect of caffeine on sister chromatid exchanges and chromosomal aberrations induced by mutagens in Chinese hamster cells, Mutat. Res., 45 (1977) 157–159.CrossRefGoogle Scholar
  102. 102.
    Popescu, N. C., S. C. Amsbaugh, and J. A. Dipaolo, The relevance of caffeine post-treatment to SCE incidence induced in Chinese hamster cells, Mutat. Res., 60 (1979) 313–320.PubMedCrossRefGoogle Scholar
  103. 103.
    Potter, H., and D. Dressier, On the mechanism of genetic recombination: Electron microscopic observation of recombination intermediates, Proc. Natl. Acad. Sci. (U.S.), 73 (1976) 3000–3004.CrossRefGoogle Scholar
  104. 104.
    Regan, J. D., J. E. Trosko, and W. L. Carrier, Evidence for excision of ultraviolet-induced pyrimidine dimers from the DNA of human cells in vitro, Biophys. J., 8 (1968) 319–325.PubMedCrossRefGoogle Scholar
  105. 105.
    Riley, R., and T. E. Miller, The differential sensitivity of desynaptic and normal genotypes of barley to x-rays, Mutat. Res., 3 (1966) 355–359.PubMedCrossRefGoogle Scholar
  106. 106.
    Robbins, J. H., W. R. Lewis, and A. E. Miller, Xeroderma pigmentosum epidermal cells with normal UV-induced thymine incorporation, J. Invest. Dermatol., 59 (1972) 5402–5408.CrossRefGoogle Scholar
  107. 107.
    Roberts, J. J., and K. N. Ward, Inhibition of post-replication repair of alkylated DNA by caffeine in Chinese hamster cells but not HeLa cells, Chem.-Biol. Interact., 7 (1973) 241–264.PubMedCrossRefGoogle Scholar
  108. 108.
    Rupp, W. D., and P. Howard-Flanders, Discontinuities in the DNA synthesis in an excision-defective strain of Escherichia coli following ultraviolet irradiation, J. Mol. Biol., 31 (1968) 291–304.PubMedCrossRefGoogle Scholar
  109. 109.
    Rupp, W. D., C. E. Wilde III, D. L. Reno, and P. Howard-Flanders, Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli, J. Mol. Biol., 61 (1971) 25–44.PubMedCrossRefGoogle Scholar
  110. 110.
    Sasaki, M. S., DNA repair capacity and susceptibility to chromosome breakage in xeroderma pigmentosum cells, Mutat. Res., 20 (1973) 291–293.PubMedCrossRefGoogle Scholar
  111. 111.
    Sasaki, M. S., Is Fanconi’s anaemia defective in a process essential to the repair of DNA cross links? Nature, 257 (1975) 501–503.PubMedCrossRefGoogle Scholar
  112. 112.
    Sasaki, M. S., Sister chromatid exchange and chromatid interchange as possible manifestation of different DNA repair processes, Nature, 269 (1977) 623–625.PubMedCrossRefGoogle Scholar
  113. 113.
    Sasaki, M. S., Fanconi’s anemia: A condition possibly associated with a defective DNA repair, In: DNA Repair Mechanisms, P. C. Hanawalt, E. C. Freidberg, and C. F. Fox (Eds.), Academic Press, New York, 1978, pp. 675–684.Google Scholar
  114. 114.
    Sasaki, M. S., unpublished data.Google Scholar
  115. 115.
    Sasaki, M. S., K. Toda, and A. Ozawa, Role of DNA repair in the susceptibility to chromosome breakage and cell killing in cultured human fibroblasts, In: Biochemistry of Cutaneous Epidermal Differentiation, M. Seiji and I. A. Bernstein (Eds.), University of Tokyo Press, Tokyo, 1977, pp. 167–180.Google Scholar
  116. 116.
    Sasaki, M. S., and A. Tonomura, A high susceptibility of Fanconi’s anemia to chromosome breakage by DNA cross-linking agents, Cancer Res., 33 (1973) 1829–1836.PubMedGoogle Scholar
  117. 117.
    Sasaki, M. S., and A. Tonomura, Meiotic recombination and somatic recombination in man (abstr.), Japan. J. Genet., 52 (1977) 472–473.Google Scholar
  118. 118.
    Schneider, E. L., D. Kram, Y. Nakanishi, R. E. Monticone, R. R. Tice, B. A. Gilman, and M. L. Nieder, The effect of aging on sister chromatid exchange, Mech. Ageing Deve., 9 (1979) 303–311.CrossRefGoogle Scholar
  119. 119.
    Schneider, E. L., and R. E. Monticone, Aging and sister chromatid exchange. II. The effect of the in vitro passage level of human fetal lung fibroblasts on baseline and mutagen-induced sister chromatid exchange frequencies, Exptl. Cell Res., 115 (1978) 269–276.PubMedCrossRefGoogle Scholar
  120. 120.
    Schönwald, A. D., and E. Passarge, U. V. light induced sister chromatid exchange in xeroderma pigmentosum lymphocytes, Hum. Genet., 36 (1977) 213–218.PubMedCrossRefGoogle Scholar
  121. 121.
    Schroeder, T. M., Sister chromatid exchanges and chromatid interchanges in Bloom’s syndrome, Humangenetik, 30 (1975) 317–323.PubMedCrossRefGoogle Scholar
  122. 122.
    Schroeder, T. M., F. Auschütz, and A. Knopp, Spontane Chromosomen-Aberrationen bei familiärer Panmyelopathie, Humangentik, 1 (1964) 194–196.CrossRefGoogle Scholar
  123. 123.
    Shaw, M. W., and M. M. Cohen, Chromosome exchanges in human leukocytes induced by mitomycin C, Genetics, 51 (1965) 181–190.PubMedGoogle Scholar
  124. 124.
    Sigal, N., and B. Albert, Genetic recombination: the nature of a crossed strand-exchange between two homologous DNA molecules, J. Mol. Biol., 71 (1972) 789–793.PubMedCrossRefGoogle Scholar
  125. 125.
    Solomon, E., and M. Bobrow, Sister chromatid exchanges — A sensitive assay of agents damaging human chromosomes. Mutat. Res., 30 (1975) 273–278.PubMedGoogle Scholar
  126. 126.
    Sperling, K., R.-D. Wegner, H. Riehm, and G. Obe, Frequency and distribution of sister chromatid exchanges in a case of Fanconi’s anemia, Humangenetik, 27 (1975) 227–230.PubMedCrossRefGoogle Scholar
  127. 127.
    Stetka, D. G., and S. Wolff, Sister chromatid exchange as an assay for genetic damage induced by mutagen-carcinogens. II. In vitro test for compounds requiring metabolic activation, Mutat. Res., 41 (1976) 343–350.PubMedCrossRefGoogle Scholar
  128. 128.
    Stich, H. F., and R. H. C. San, Reduced DNA repair synthesis in xeroderma pigmentosum cells exposed to the oncogenic 4-nitroquinoline 1-oxide and 4-hydroxyaminoquinoline 1-oxide, Mutat. Res., 13 (1971) 279–282.CrossRefGoogle Scholar
  129. 129.
    Taylor, A. M. R., Unrepaired DNA strand breaks in irradiated ataxia telangiectasia lymphocytes suggested from cytogenetic observations, Mutat. Res., 50 (1978) 407–418.PubMedCrossRefGoogle Scholar
  130. 130.
    Taylor, A. M. R., D. G. Harnden, C. F. Arlett, S. A. Harcourt, A. R. Lehmann, S. Stevens, and B. A. Bridges, Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity, Nature, 258 (1975) 427–429.PubMedCrossRefGoogle Scholar
  131. 131.
    Taylor, A. M. R., J. A. Metcalfe, J. M. Oxford, and D. G. Harnden, Is chromatid-type damage in ataxia telangiectasia after irradiation at G0 a consequence of defective repair? Nature, 260 (1976) 441–443.PubMedCrossRefGoogle Scholar
  132. 132.
    Taylor, A. M. R., C. M. Rosney, and J. B. Campbell, Unusual sensitivity of ataxia telangiectasia cells to bleomycin, Cancer Res., 39 (1979) 1046–1050.PubMedGoogle Scholar
  133. 133.
    Taylor, J. H., P. S. Woods, and W. L. Hughes, The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine, Proc. Natl. Acad. Sci. (U.S.), 43 (1957) 122–128.CrossRefGoogle Scholar
  134. 134.
    Trosko, J. E., C. Chang, L. P. Yotti, and E. H. Y. Chu, Effect of phorbolmyristate acetate on the recovery of spontaneous and ultraviolet light-induced 6-thioguanine and ouabain-resistant Chinese hamster cells, Cancer Res., 37 (1977) 188–193.PubMedGoogle Scholar
  135. 135.
    Trosko, J. E., and E. H. Y. Chu, Inhibition of repair of UV-damaged DNA by caffeine and mutation induction in Chinese hamster cells, Chem.-Biol. Interact., 6 (1973) 317–332.PubMedCrossRefGoogle Scholar
  136. 136.
    Trosko, J. E., P. Frank, E. H. Y. Chu, and J. E. Becker, Caffeine inhibition of postreplication repair of N-acetoxy-2-acetyl-aminofluorene-damaged DNA in Chinese hamster cells, Cancer Res., 33 (1973) 2444–2449.PubMedGoogle Scholar
  137. 137.
    Ueda, N., H. Uenaka, T. Akematsu, and T. Sugiyama, Parallel distribution of sister chromatid exchanges and chromosome aberrations, Nature, 262 (1976) 581–583.PubMedCrossRefGoogle Scholar
  138. 138.
    Vogel, W., and T. L. Bauknecht, Effects of caffeine on sister chromatid exchanges (SCE) after exposure to UV light or triaziquone studied with a fluorescence plus Giemsa (FPG) technique, Human Genet., 40 (1978) 193–198.CrossRefGoogle Scholar
  139. 139.
    Watson, A. W. F., Studies on a recombination-deficient mutant of Drosophila. II. Response to x-rays and alkylating agents, Mutat. Res., 14 (1972) 299–307.CrossRefGoogle Scholar
  140. 140.
    Whitehouse, H. L. K., A theory of crossing-over by means of hybrid deoxyribonucleic acid, Nature, 199 (1963) 1034–1040.PubMedCrossRefGoogle Scholar
  141. 141.
    Wolff, S., Relation between DNA repair, chromosome aberration, and sister chromatid exchanges, In: DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, and C. F. Fox (Eds.), Academic Press, New York, 1978, pp. 751–760.Google Scholar
  142. 142.
    Wolff, S., and D. J. Bodycote, The induction of chromatid deletions in accord with the breakage-and-reunion hypothesis, Mutat. Res., 29 (1975) 85–91.PubMedCrossRefGoogle Scholar
  143. 143.
    Wolff, S., D. J. Bodycote, and R. B. Painter, Sister chromatid exchanges induced in Chinese hamster cells by UV irradiation of different stages of the cell cycle: the necessity for cells to pass through S, Mutat. Res., 25 (1974) 73–81.PubMedCrossRefGoogle Scholar
  144. 144.
    Wolff, S., J. Bodycote, G. H. Thomas, and J. E. Cleaver, Sister chromatid exchanges in xeroderma pigmentosum cells that are defective in DNA excision repair or post-replication repair, Genetics, 81 (1975) 349–355.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Masao S. Sasaki
    • 1
  1. 1.Radiation Biology CenterKyoto UniversitySakyo-Ku, Kyoto 606Japan

Personalised recommendations