Advertisement

Relationship Between Repair Processes and Mutation Induction in Bacteria

  • R. F. Kimball
Part of the Basic Life Sciences book series (BLSC, volume 15)

Summary

A summary is given of the main repair and replication-associated processes that can influence the induction of mutations by various mutagens in bacteria. These include both constitutive and induced, error-free and error-prone systems. The mutation yield from a treatment with a mutagen can be markedly affected by which of these systems is operating in a given bacterial species or strain. The effect of these systems on mutation induction by ultraviolet light, monofunctional alkylating agents, base analogues, and frameshift mutagens is discussed in some detail. The bearing of these studies on the practical problems of estimating hazards is briefly considered.

Keywords

Mismatch Repair Excision Repair Haemophilus Influenzae Mutation Induction Methyl Methanesulfonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beattie, K. L., N-Nitrosocarbaryl-induced mutagenesis in Haemophilus influenzae strains deficient in repair and recombination, Mutat. Res., 27 (1975) 201–217.PubMedCrossRefGoogle Scholar
  2. 2.
    Beattie, K. L., and R. F. Kimball, Involvement of DNA replication and repair in mutagenesis of Haemophilus influenzae induced by N-nitrosocarbaryl, Mutat. Res., 24 (1974) 105–115.PubMedCrossRefGoogle Scholar
  3. 3.
    Boiteux, S., G. Villani, S. Spardari, F. Zambrano, and M. Radman, Making and correcting errors in DNA synthesis: in vitro studies of mutagenesis, in: DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, and C. F. Fox (Eds.), Academic Press, New York, 1978, pp. 73–84.Google Scholar
  4. 4.
    Bridges, B. A., Mutation induction, In: Second International Symposium on the Genetics of Industrial Microorganisms, K. D. Macdonald (Ed.), Academic Press, New York, 1976, pp. 7–14.Google Scholar
  5. 5.
    Bridges, B. A., Bacterial Reaction to Radiation, Patterns in Progress, Meadowfield, Durham, England, 1976.Google Scholar
  6. 6.
    Bridges, B. A., Mutagenic DNA repair in Escherichia coli. VI. Gamma radiation mutagenesis in tif-1 strain, Mol. Gen. Genet., 151 (1977) 115–120.PubMedCrossRefGoogle Scholar
  7. 7.
    Bridges, B. A., Recent advances in basic mutation research, Abh. Akad. Wiss. DDR, Abt. Mathematik, Naturwiss., Technik, N 9 (1977) 9–21.Google Scholar
  8. 8.
    Bridges, B. A., The involvement of E. coli DNA polymerase III in constitutive and inducible mutagenic repair, In: DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, and C. F. Fox (Eds.), Academic Press, New York, 1978, pp. 345–348.Google Scholar
  9. 9.
    Bridges, B. A., and R. Mottershead, RecA+-dependent mutagenesis occurring before DNA replication in UV and γ-irradiated Escherichia coli, Mutat. Res., 13 (1971) 1–18.PubMedCrossRefGoogle Scholar
  10. 10.
    Brutlage, D., and A. Romberg, Enzymatic synthesis of deoxyribonucleic acid. XXXVI. A proofreading function for the 3′→5′ exonuclease activity in deoxyribonucleic acid polymerases, J. Biol. Chem., 247 (1972) 241–248.Google Scholar
  11. 11.
    Cerdá-Olmedo, E., P. C. Hanawalt, and N. Guerola, Mutagenesis of the replication point by nitrosoguanidine: Map and pattern of replication of the Escherichia coli chromosome, J. Mol. Biol., 33 (1968) 705–719.PubMedCrossRefGoogle Scholar
  12. 12.
    Clark, A. J., and M. R. Volkert, A new classification of pathways repairing pyrimidine dimer damage, In: DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, and C. F. Fox (Eds.), Academic Press, New York, 1978, pp. 57–72.Google Scholar
  13. 13.
    Cox, E. C., Bacterial mutation genes and the control of spontaneous mutation, Ann. Rev. Genet., 10 (1976) 135–156.PubMedCrossRefGoogle Scholar
  14. 14.
    Doudney, C. O., Mutation in ultraviolet light-damaged microorganisms, In: Photochemistry and Photobiology of Nucleic Acids, S. Y. Wang (Ed.), Academic Press, New York, 1976, pp. 309–374.Google Scholar
  15. 15.
    Drake, J. W., The Molecular Basis of Mutation, Holden-Day, San Francisco, 1970.Google Scholar
  16. 16.
    Dubinin, N. P., V. D. Filippov, and E. E. Zagoriuko, Induction of antimutagenic activity in Bacillus subtilis cells by ultraviolet radiation, Dokl. Biol. Sci., 232 (1977) 32–35.Google Scholar
  17. 17.
    Gerchman, L. L., and D. B. Ludlum, The properties of O6-methylguanine in templates for RNA polymerase, Biochim. Biophys. Acta, 308 (1973) 310–316.PubMedGoogle Scholar
  18. 18.
    Glickman, B. W., N. Guijt, and P. Morand, The genetic characterization of lexB32, lexB33, and lexB35 mutations of Escherichia coli: Location and complementation pattern for UV resistance, Mol. Gen. Genet., 157 (1977) 83–89.PubMedCrossRefGoogle Scholar
  19. 19.
    Glickman, B. W., P. van den Elsen, and M. Radman, Induced mutagenesis in dam mutants of Escherichia coli: A role for 6-methyladenine residues in mutation avoidance. Mol. Gen. Genet., 163 (1978) 307–312.PubMedCrossRefGoogle Scholar
  20. 20.
    Gose, A., and R. Devoret, Plasmid pKMl0l promoted repair is different from SOS repair, Mutat. Res., in press.Google Scholar
  21. 21.
    Guerola, N., and E. Cerdá-Olmedo, Distribution of mutations induced by ethyl methanesulphonate and ultraviolet radiation in the Escherichia coli chromosome, Mutat. Res., 29 (1975) 145–147.PubMedCrossRefGoogle Scholar
  22. 22.
    Guerola, N., J. L. Ingraham, and E. Cerdá-Olmedo, Induction of closely linked multiple mutations by nitrosoguanidine, Nature New Biol., 230 (1971) 122–125.PubMedGoogle Scholar
  23. 23.
    Hanawalt, P. C., E. C. Friedberg, and C. F. Fox (Eds.), DNA Repair Mechanisms, Academic Press, New York, 1978.Google Scholar
  24. 24.
    Hanawalt, P. C., and R. B. Setlow (Eds.), Molecular Mechanisms for the Repair of DNA, Plenum Press, New York, 1975.Google Scholar
  25. 25.
    Hansen, M. T., Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans, J. Bacteriol., 134 (1978) 71–75.PubMedGoogle Scholar
  26. 26.
    Hince, T. A., and S. Neale, A comparison of the mutagenic action of the methyl and ethyl derivatives of nitrosamides and nitrosamidines on Escherichia coli, Mutat. Res., 24 (1974) 383–387.PubMedCrossRefGoogle Scholar
  27. 27.
    Hince, T. A., and S. Neale, Physiological modification of alkylating-agent induced mutagenesis. I. Effect of growth rate and repair capacity on nitrosomethyl-urea-induced mutation of Escherichia coli, Mutat. Res., 46 (1977) 1–10.PubMedGoogle Scholar
  28. 28.
    Hince, T. A., and S. Neale, Physiological modification of alkylating agent induced mutagenesis. II. Influence of the numbers of chromosome replicating forks and gene copies on the frequency of mutations induced in Escherichia coli, Mutat Res., 43 (1977) 11–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Hutchinson, F., and J. Stein, Mutagenesis of lambda phage:5-bromouracil and hydroxylamine, Mol. Gen. Genet., 152 (1977) 29–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Ichikawa-Ryo, H., and S. Kondo, Indirect mutagenesis in phage lambda by ultraviolet preirradiation of host bacteria, J. Mol. Biol., 97 (1975) 77–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Ishii, Y., and S. Kondo, Comparative analysis of deletion and base-change mutabilities of Escherichia coli B strains differing in repair capacity (wild type, urvA , polA , recA ) by various mutagens, Mutat. Res., 27 (1975) 27–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Jacob, F., Mutation d’un bacteriophage indirite par l’irradiation des senles bactéries-hôtes avant l’infection, C. R. Acad. Sci. (Paris) D, 238 (1954) 732–734.Google Scholar
  33. 33.
    Jeggo, P., M. Defais, L. Samson, and P. Schendel, An adaptive response of E. coli to low levels of alkylating agent: Comparison with previously characterized DNA repair pathways, Mol. Gen. Genet., 157 (1977) 1–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Johnson, B. F., Genetic mapping of the lexC-113 mutation, Mol. Gen. Genet., 157 (1977) 91–97.PubMedCrossRefGoogle Scholar
  35. 35.
    Kanner, L., and P. Hanawalt, Efficiency of utilization of thymine and 5-bromouracil for normal and repair DNA synthesis in bacteria, Biochim. Biophys. Acta, 157 (1968) 532–545.PubMedGoogle Scholar
  36. 36.
    Kato, T., R. H. Rothman, and A, J. Clark, Analysis of the role of recombination and repair in mutagenesis of Escherichia coli by UV irradiation, Genetics, 87 (1977) 1–18.PubMedGoogle Scholar
  37. 37.
    Kato, T., and Y. Shinoura, Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light, Mol. Gen. Genet., 156 (1977) 121–131.PubMedGoogle Scholar
  38. 38.
    Kimball, R. F., The relation of repair phenomena to mutation induction in bacteria, Mutat. Res., 55 (1978) 85–120.PubMedGoogle Scholar
  39. 39.
    Kimball, R. F., M. E. Boling, and S. W. Perdue, Evidence that UV-inducible error-prone repair is absent in Haemophilus influenzae Rd, with a discussion of the relation to errorprone repair of alkylating-agent damage, Mutat. Res., 44 (1977) 183–196.PubMedCrossRefGoogle Scholar
  40. 40.
    Kimball, R. F., and S. W. Perdue, Attempts to induce mutations in Haemophilus influenzae with the base analogues 5-bromodeoxyuridine and 2-aminopurine, Mutat. Res., 44 (1977) 197–206.PubMedCrossRefGoogle Scholar
  41. 41.
    Kimball, R. F., and S. W. Perdue, unpublished data.Google Scholar
  42. 42.
    Kimball, R. F., S. W. Perdue, and M. E. Boling, The role of prereplication and postreplication processes in mutation induction in Haemophilus influenzae by N-methyl-N′-nitro-N-nitrosoguanidine, Mutat. Res., 52 (1978) 57–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Kimball, R. F., and J. K. Setlow, Mutation fixation in MNNG-treated Haemophilus influenzae as determined by transformation, Mutat. Res., 22 (1974) 1–14.PubMedCrossRefGoogle Scholar
  44. 44.
    Kirtikar, D. M., J. P. Kuebler, A. Dipple, and D. A. Goldthwaite, Enzymes involved in repair of DNA damaged by chemical carcinogens and γ-irradiation, Miami Winter Symp., 12 (1976) 139–155.Google Scholar
  45. 45.
    Kondo, S., Misrepair model for mutagenesis and carcinogenesis, In: Fundamentals in Cancer Prevention, P. N. Magee, S. Takayama, T. Sugimura and T. Matsushima (Eds.), University Park, Baltimore, 1976, pp. 417–429.Google Scholar
  46. 46.
    Kondo, S., H. Ichikawa, K. Iwo, and T. Kato, Base-change mutagenesis and prophage induction in strains of Escherichia coli with different DNA repair capacities, Genetics, 66 (1970) 187–217.PubMedGoogle Scholar
  47. 47.
    Lark, K. G., Some aspects of the regulation of DNA replication in Escherichia coli, In: Biological Regulation and Development, Vol. 1, R. F. Goldberger (Ed.), Plenum Press, New York, 1979, pp. 201–217.CrossRefGoogle Scholar
  48. 48.
    Lindahl, T., DNA glycosylases, endonucleases for apurinic/ apyrimidinic sites, and base excision-repair, Progr. Nucleic Acid Res. Mol. Biol., 22 (1979) 135–192.CrossRefGoogle Scholar
  49. 49.
    Linn, S., U. Kuhnlein, and W. A. Deutsch, Enzymes from human fibroblasts for the repair of AP DNA, In: DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg, and C. F. Fox (Eds.), Academic Press, New York, 1978, pp. 199–203.Google Scholar
  50. 50.
    Loveless, A., Possible relevance of O-6-alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides, Nature, 223 (1969) 206–207.PubMedCrossRefGoogle Scholar
  51. 51.
    McCann, J., E. Choi, E. Yamasaki, and B. N. Ames, Detection of carcinogens in the Salmonella/microsome test: assay of 300 chemicals, Proc. Natl. Acad. Sci. (U.S.), 72 (1975) 5135–5139.CrossRefGoogle Scholar
  52. 52.
    McCann, J., N. E. Spingarn, J. Kobori, and B. N. Ames, Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids, Proc. Natl. Acad. Sci. (U.S.), 72 (1975) 979–983.CrossRefGoogle Scholar
  53. 53.
    Monti-Bragadin, N. Babudri, and L. Samer, Expression of the plasmid pKM101-determined DNA repair system in recA and lex strains of Escherichia coli, Mol. Gen. Genet., 145 (1976) 303–306.PubMedCrossRefGoogle Scholar
  54. 54.
    Moseley, B. E. B., and H. J. R. Copland, Four mutants of Micrococcus radiodurans defective in the ability to repair DNA damaged by mitomycin-C, two of which have wild type resistance to ultraviolet radiation, Mol. Gen. Genet., 160 (1978) 331–337.PubMedCrossRefGoogle Scholar
  55. 55.
    Mount, D. W., C. D. Kosel, and A. Walker, Inducible, error-free repair in tsl recA mutants of E. coli, Mol. Gen. Genet., 146 (1976) 37–41.PubMedCrossRefGoogle Scholar
  56. 56.
    Newton, A., D. Masys, E. Leonardi, and D. Wygal, Association of induced frameshift mutagenesis and DNA replication in Escherichia coli, Nature New Biol., 236 (1972) 19–22.CrossRefGoogle Scholar
  57. 57.
    Nishioka, H., and C. O. Doudney, Different modes of loss of photoreversibility of mutation and lethal damage in ultraviolet-light resistant and sensitive bacteria, Mutat. Res., 8 (1969) 215–228.PubMedCrossRefGoogle Scholar
  58. 58.
    Nishioka, H., and C. O. Doudney, Different modes of loss of photoreversibility of ultraviolet light-induced true and suppressor mutations to tryptophan independence in an auxotrophic strain of Escherichia coli, Mutat. Res., 9 (1970) 349–358.PubMedCrossRefGoogle Scholar
  59. 59.
    Pietrzykowska, I., On the mechanism of bromouracil-induced mutagenesis, Mutat. Res., 19 (1973) 1–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Pietrzykowska, I., K. Lewandowsky, and D. Shugar, Liquidholding recovery of bromouracil-induced lesions in DNA of Escherichia coli CR-34 and its possible relation to dark repair mechanisms, Mutat. Res., 30 (1975) 21–32.CrossRefGoogle Scholar
  61. 61.
    Radman, M., SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis, In: Molecular Mechanisms for Repair of DNA, Part A, P. C. Hanawalt and R. B. Setlow (Eds.), Plenum Press, New York, 1975, pp. 355–367.CrossRefGoogle Scholar
  62. 62.
    Radman, M., Inducible pathways in deoxyribonucleic acid repair, mutagenesis, and carcinogenesis, Biochem. Soc. Trans., 5 (1977) 903–921.Google Scholar
  63. 63.
    Radman, M., G. Villani, S. Boiteux, M. Defais, and P. Caillet-Facquet, On the mechanism and genetic control of mutagenesis induced by carcinogenic mutagens, Cold Spring Harbor Conf. Cell Proliferation, 4 (1977) 903–921.Google Scholar
  64. 64.
    Russell, W. L., Radiation and chemical mutagenesis and repair in mice, In: Molecular and Cellular Repair Processes, R. F. Beers, Jr., R. M. Herriott, and R. C. Tilghman (Eds.), Johns Hopkins Press, Baltimore, 1972, pp. 239–247.Google Scholar
  65. 65.
    Russell, W. L., The role of mammals in the future of chemical mutagenesis research, Arch. Toxicol., 38 (1977) 141–147.PubMedCrossRefGoogle Scholar
  66. 66.
    Rydberg, B., Bromouracil mutagenesis in Escherichia coli: Evidence for involvement of mismatch repair, Mol. Gen. Genet., 152 (1977) 19–28.PubMedCrossRefGoogle Scholar
  67. 67.
    Rydberg, B., Bromouracil mutagenesis and mismatch repair in mutator strains of Escherichia coli, Mutat. Res., 52 (1978) 11–24.PubMedCrossRefGoogle Scholar
  68. 68.
    Samson, L., and J. Cairns, A new pathway for DNA repair in Escherichia coli, Nature, 267 (1977) 281–282.PubMedCrossRefGoogle Scholar
  69. 69.
    Schendel, P. F., M. Defais, P. Jeggo, L. Samson and J. Cairns, Pathways of mutagenesis and repair in Escherichia coli exposed to low levels of simple alkylating agents, J. Bact., 135 (1978) 466–475.PubMedGoogle Scholar
  70. 70.
    Schendel, P. F., and P. E. Robins, Repair of O6-methylguanine in adapted Escherichia coli, Proc. Natl. Acad. Sci. (U.S.), 75 (1978) 6017–6020.CrossRefGoogle Scholar
  71. 71.
    Sedgwick, S. G., Misrepair of overlapping daughter strand gaps as a possible mechanism for UV-induced mutagenesis in uvr strains of Escherichia coli. A general model for induced mutagenesis by misrepair (SOS repair) of closely spaced DNA lesions, Mutat. Res., 41 (1976) 185–200.PubMedCrossRefGoogle Scholar
  72. 72.
    Setlow, R. B., DNA repair pathways, This volume, p. 45.Google Scholar
  73. 73.
    Smith, K. C., D. A. Youngs, E. Van der Scheuren, E. M. Carlson, and N. J. Sargenti, Excision repair and mutagenesis are complex processes, In: DNA Repair Mechanisms, P. C. Hanawalt, E. C. Friedberg and C. F. Fox (Eds.), Academic Press, New York, 1978, pp. 247–250.Google Scholar
  74. 74.
    Strauss, B., K. N. Ayers, K. Bose, P. Moore, R. Sklar, and K. Tatsumi, Role of cellular systems in modifying the response to chemical mutagens, This volume, p. 25.Google Scholar
  75. 75.
    Strauss, B., R. Wahl-Synek, H. Reiter, and T. Searashi, Repair of damage induced by a monofunctional alkylating agent in Bacillus subtilis: relation to the repair of UV-induced damage, In: Symposium on the Mutational Process, Academia, Prague, 1965, pp. 39–48.Google Scholar
  76. 76.
    Streisinger, G., Y. Okada, J. Emrich, J. Newton, A. Tsugita, E. Terzaghi, and M. Inouye, Frameshift mutations and the genetic code, Cold Spring Harbor Symp., 31 (1966) 77–84.CrossRefGoogle Scholar
  77. 77.
    Walker, G. C., Plasmid (pKM101)-mediated enhancement of repair and mutagenesis: dependence on chromosomal genes in Escherichia coli K-12, Mol. Gen. Genet., 152 (1977) 93–103.PubMedCrossRefGoogle Scholar
  78. 78.
    Walker, G. C., and P. P. Dobson, Mutagenesis and repair deficiencies of Escherichia coli mumC mutants are suppressed by the plasmid pKM101, Molec. Gen. Genet., 172 (1979) 17–24.PubMedCrossRefGoogle Scholar
  79. 79.
    Witkin, E. M., Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet light, Brookhaven Symp. Biol., 29 (1967) 17–55.Google Scholar
  80. 80.
    Witkin, E. M., The role of DNA repair and recombination in mutagenesis, Proc. XII Int. Congr. Genet., 3 (1969) 225–245.Google Scholar
  81. 81.
    Witkin, E. M., Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev., 40 (1976) 869–907.PubMedGoogle Scholar
  82. 82.
    Witkin, E. M., and E. C. Parisi, Bromouracil mutagenesis: mispairing or misrepair?, Mutat. Res., 25 (1974) 407–409.PubMedCrossRefGoogle Scholar
  83. 83.
    Witkin, E. M., and I. E. Wermandsen, Induction of lambda prophage and of mutations to streptomycin resistance in separate small fractions of a lysogenic derivative of Escherichia coli B, or by very low doses of ultraviolet light, Mol. Gen. Genet., 156 (1977) 35–39.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. F. Kimball
    • 1
  1. 1.Biology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations